SynCL: A Synergistic Training Strategy with Instance-Aware Contrastive Learning for End-to-End Multi-Camera 3D Tracking
- URL: http://arxiv.org/abs/2411.06780v2
- Date: Sat, 25 Jan 2025 08:52:03 GMT
- Title: SynCL: A Synergistic Training Strategy with Instance-Aware Contrastive Learning for End-to-End Multi-Camera 3D Tracking
- Authors: Shubo Lin, Yutong Kou, Zirui Wu, Shaoru Wang, Bing Li, Weiming Hu, Jin Gao,
- Abstract summary: SynCL is a novel plug-and-play synergistic training strategy designed to co-facilitate multi-task learning for detection and tracking.
We show that SynCL consistently delivers improvements when integrated with the training stage of various query-based 3D MOT trackers.
Without additional inference costs, SynCL improves the state-of-the-art PF-Track method by $+3.9%$ AMOTA and $+2.0%$ NDS on the nuScenes dataset.
- Score: 34.90147791481045
- License:
- Abstract: While existing query-based 3D end-to-end visual trackers integrate detection and tracking via the tracking-by-attention paradigm, these two chicken-and-egg tasks encounter optimization difficulties when sharing the same parameters. Our findings reveal that these difficulties arise due to two inherent constraints on the self-attention mechanism, i.e., over-deduplication for object queries and self-centric attention for track queries. In contrast, removing self-attention mechanism not only minimally impacts regression predictions of the tracker, but also tends to generate more latent candidate boxes. Based on these analyses, we present SynCL, a novel plug-and-play synergistic training strategy designed to co-facilitate multi-task learning for detection and tracking. Specifically, we propose a Task-specific Hybrid Matching module for a weight-shared cross-attention-based decoder that matches the targets of track queries with multiple object queries to exploit promising candidates overlooked by the self-attention mechanism. To dynamically select optimal candidates for the one-to-many matching, we also design a Cost-based Query Filtering module controlled by model training status. Moreover, we introduce Instance-aware Contrastive Learning to break through the barrier of self-centric attention for track queries, effectively bridging the gap between detection and tracking. Extensive experiments demonstrate that SynCL consistently delivers improvements when integrated with the training stage of various query-based 3D MOT trackers. Without additional inference costs, SynCL improves the state-of-the-art PF-Track method by $+3.9\%$ AMOTA and $+2.0\%$ NDS on the nuScenes dataset.
Related papers
- Multi-object Tracking by Detection and Query: an efficient end-to-end manner [23.926668750263488]
Multi-object tracking is advancing through two dominant paradigms: traditional tracking by detection and newly emerging tracking by query.
We propose the tracking-by-detection-and-query paradigm, which is achieved by a Learnable Associator.
Compared to tracking-by-query models, LAID achieves competitive tracking accuracy with notably higher training efficiency.
arXiv Detail & Related papers (2024-11-09T14:38:08Z) - ADA-Track++: End-to-End Multi-Camera 3D Multi-Object Tracking with Alternating Detection and Association [15.161640917854363]
We introduce ADA-Track++, a novel end-to-end framework for 3D MOT from multi-view cameras.
We introduce a learnable data association module based on edge-augmented cross-attention.
We integrate this association module into the decoder layer of a DETR-based 3D detector.
arXiv Detail & Related papers (2024-05-14T19:02:33Z) - Single-Shot and Multi-Shot Feature Learning for Multi-Object Tracking [55.13878429987136]
We propose a simple yet effective two-stage feature learning paradigm to jointly learn single-shot and multi-shot features for different targets.
Our method has achieved significant improvements on MOT17 and MOT20 datasets while reaching state-of-the-art performance on DanceTrack dataset.
arXiv Detail & Related papers (2023-11-17T08:17:49Z) - You Only Need Two Detectors to Achieve Multi-Modal 3D Multi-Object Tracking [9.20064374262956]
The proposed framework can achieve robust tracking by using only a 2D detector and a 3D detector.
It is proven more accurate than many of the state-of-the-art TBD-based multi-modal tracking methods.
arXiv Detail & Related papers (2023-04-18T02:45:18Z) - 3DMODT: Attention-Guided Affinities for Joint Detection & Tracking in 3D
Point Clouds [95.54285993019843]
We propose a method for joint detection and tracking of multiple objects in 3D point clouds.
Our model exploits temporal information employing multiple frames to detect objects and track them in a single network.
arXiv Detail & Related papers (2022-11-01T20:59:38Z) - End-to-end Tracking with a Multi-query Transformer [96.13468602635082]
Multiple-object tracking (MOT) is a challenging task that requires simultaneous reasoning about location, appearance, and identity of the objects in the scene over time.
Our aim in this paper is to move beyond tracking-by-detection approaches, to class-agnostic tracking that performs well also for unknown object classes.
arXiv Detail & Related papers (2022-10-26T10:19:37Z) - Unified Transformer Tracker for Object Tracking [58.65901124158068]
We present the Unified Transformer Tracker (UTT) to address tracking problems in different scenarios with one paradigm.
A track transformer is developed in our UTT to track the target in both Single Object Tracking (SOT) and Multiple Object Tracking (MOT)
arXiv Detail & Related papers (2022-03-29T01:38:49Z) - Distractor-Aware Fast Tracking via Dynamic Convolutions and MOT
Philosophy [63.91005999481061]
A practical long-term tracker typically contains three key properties, i.e. an efficient model design, an effective global re-detection strategy and a robust distractor awareness mechanism.
We propose a two-task tracking frame work (named DMTrack) to achieve distractor-aware fast tracking via Dynamic convolutions (d-convs) and Multiple object tracking (MOT) philosophy.
Our tracker achieves state-of-the-art performance on the LaSOT, OxUvA, TLP, VOT2018LT and VOT 2019LT benchmarks and runs in real-time (3x faster
arXiv Detail & Related papers (2021-04-25T00:59:53Z) - DEFT: Detection Embeddings for Tracking [3.326320568999945]
We propose an efficient joint detection and tracking model named DEFT.
Our approach relies on an appearance-based object matching network jointly-learned with an underlying object detection network.
DEFT has comparable accuracy and speed to the top methods on 2D online tracking leaderboards.
arXiv Detail & Related papers (2021-02-03T20:00:44Z) - Chained-Tracker: Chaining Paired Attentive Regression Results for
End-to-End Joint Multiple-Object Detection and Tracking [102.31092931373232]
We propose a simple online model named Chained-Tracker (CTracker), which naturally integrates all the three subtasks into an end-to-end solution.
The two major novelties: chained structure and paired attentive regression, make CTracker simple, fast and effective.
arXiv Detail & Related papers (2020-07-29T02:38:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.