Boosting the Targeted Transferability of Adversarial Examples via Salient Region & Weighted Feature Drop
- URL: http://arxiv.org/abs/2411.06784v1
- Date: Mon, 11 Nov 2024 08:23:37 GMT
- Title: Boosting the Targeted Transferability of Adversarial Examples via Salient Region & Weighted Feature Drop
- Authors: Shanjun Xu, Linghui Li, Kaiguo Yuan, Bingyu Li,
- Abstract summary: A prevalent approach for adversarial attacks relies on the transferability of adversarial examples.
A novel framework based on Salient region & Weighted Feature Drop (SWFD) designed to enhance the targeted transferability of adversarial examples.
- Score: 2.176586063731861
- License:
- Abstract: Deep neural networks can be vulnerable to adversarially crafted examples, presenting significant risks to practical applications. A prevalent approach for adversarial attacks relies on the transferability of adversarial examples, which are generated from a substitute model and leveraged to attack unknown black-box models. Despite various proposals aimed at improving transferability, the success of these attacks in targeted black-box scenarios is often hindered by the tendency for adversarial examples to overfit to the surrogate models. In this paper, we introduce a novel framework based on Salient region & Weighted Feature Drop (SWFD) designed to enhance the targeted transferability of adversarial examples. Drawing from the observation that examples with higher transferability exhibit smoother distributions in the deep-layer outputs, we propose the weighted feature drop mechanism to modulate activation values according to weights scaled by norm distribution, effectively addressing the overfitting issue when generating adversarial examples. Additionally, by leveraging salient region within the image to construct auxiliary images, our method enables the adversarial example's features to be transferred to the target category in a model-agnostic manner, thereby enhancing the transferability. Comprehensive experiments confirm that our approach outperforms state-of-the-art methods across diverse configurations. On average, the proposed SWFD raises the attack success rate for normally trained models and robust models by 16.31% and 7.06% respectively.
Related papers
- Transferable Adversarial Attacks on SAM and Its Downstream Models [87.23908485521439]
This paper explores the feasibility of adversarial attacking various downstream models fine-tuned from the segment anything model (SAM)
To enhance the effectiveness of the adversarial attack towards models fine-tuned on unknown datasets, we propose a universal meta-initialization (UMI) algorithm.
arXiv Detail & Related papers (2024-10-26T15:04:04Z) - Efficient Generation of Targeted and Transferable Adversarial Examples for Vision-Language Models Via Diffusion Models [17.958154849014576]
Adversarial attacks can be used to assess the robustness of large visual-language models (VLMs)
Previous transfer-based adversarial attacks incur high costs due to high iteration counts and complex method structure.
We propose AdvDiffVLM, which uses diffusion models to generate natural, unrestricted and targeted adversarial examples.
arXiv Detail & Related papers (2024-04-16T07:19:52Z) - SA-Attack: Improving Adversarial Transferability of Vision-Language
Pre-training Models via Self-Augmentation [56.622250514119294]
In contrast to white-box adversarial attacks, transfer attacks are more reflective of real-world scenarios.
We propose a self-augment-based transfer attack method, termed SA-Attack.
arXiv Detail & Related papers (2023-12-08T09:08:50Z) - An Adaptive Model Ensemble Adversarial Attack for Boosting Adversarial
Transferability [26.39964737311377]
We propose an adaptive ensemble attack, dubbed AdaEA, to adaptively control the fusion of the outputs from each model.
We achieve considerable improvement over the existing ensemble attacks on various datasets.
arXiv Detail & Related papers (2023-08-05T15:12:36Z) - Generating Adversarial Examples with Better Transferability via Masking
Unimportant Parameters of Surrogate Model [6.737574282249396]
We propose to improve the transferability of adversarial examples in the transfer-based attack via unimportant masking parameters (MUP)
The key idea in MUP is to refine the pretrained surrogate models to boost the transfer-based attack.
arXiv Detail & Related papers (2023-04-14T03:06:43Z) - Fuzziness-tuned: Improving the Transferability of Adversarial Examples [18.880398046794138]
adversarial examples have been widely used to enhance the robustness of the training models on deep neural networks.
The attack success rate of the transfer-based attacks on the surrogate model is much higher than that on victim model under the low attack strength.
A fuzziness-tuned method is proposed to ensure the generated adversarial examples can effectively skip out of the fuzzy domain.
arXiv Detail & Related papers (2023-03-17T16:00:18Z) - Making Substitute Models More Bayesian Can Enhance Transferability of
Adversarial Examples [89.85593878754571]
transferability of adversarial examples across deep neural networks is the crux of many black-box attacks.
We advocate to attack a Bayesian model for achieving desirable transferability.
Our method outperforms recent state-of-the-arts by large margins.
arXiv Detail & Related papers (2023-02-10T07:08:13Z) - Harnessing Perceptual Adversarial Patches for Crowd Counting [92.79051296850405]
Crowd counting is vulnerable to adversarial examples in the physical world.
This paper proposes the Perceptual Adrial Patch (PAP) generation framework to learn the shared perceptual features between models.
arXiv Detail & Related papers (2021-09-16T13:51:39Z) - Boosting Transferability of Targeted Adversarial Examples via
Hierarchical Generative Networks [56.96241557830253]
Transfer-based adversarial attacks can effectively evaluate model robustness in the black-box setting.
We propose a conditional generative attacking model, which can generate the adversarial examples targeted at different classes.
Our method improves the success rates of targeted black-box attacks by a significant margin over the existing methods.
arXiv Detail & Related papers (2021-07-05T06:17:47Z) - Boosting Black-Box Attack with Partially Transferred Conditional
Adversarial Distribution [83.02632136860976]
We study black-box adversarial attacks against deep neural networks (DNNs)
We develop a novel mechanism of adversarial transferability, which is robust to the surrogate biases.
Experiments on benchmark datasets and attacking against real-world API demonstrate the superior attack performance of the proposed method.
arXiv Detail & Related papers (2020-06-15T16:45:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.