Causal-discovery-based root-cause analysis and its application in time-series prediction error diagnosis
- URL: http://arxiv.org/abs/2411.06990v1
- Date: Mon, 11 Nov 2024 13:48:13 GMT
- Title: Causal-discovery-based root-cause analysis and its application in time-series prediction error diagnosis
- Authors: Hiroshi Yokoyama, Ryusei Shingaki, Kaneharu Nishino, Shohei Shimizu, Thong Pham,
- Abstract summary: Heuristic attribution methods, while helpful, often fail to capture true causal relationships, leading to inaccurate error attributions.
We introduce the Causal-Discovery-based Root-Cause Analysis (CD-RCA) method that estimates causal relationships between the prediction error and the explanatory variables.
By simulating synthetic error data, CD-RCA can identify variable contributions to outliers in prediction errors by Shapley values.
- Score: 8.309366167066278
- License:
- Abstract: Recent rapid advancements of machine learning have greatly enhanced the accuracy of prediction models, but most models remain "black boxes", making prediction error diagnosis challenging, especially with outliers. This lack of transparency hinders trust and reliability in industrial applications. Heuristic attribution methods, while helpful, often fail to capture true causal relationships, leading to inaccurate error attributions. Various root-cause analysis methods have been developed using Shapley values, yet they typically require predefined causal graphs, limiting their applicability for prediction errors in machine learning models. To address these limitations, we introduce the Causal-Discovery-based Root-Cause Analysis (CD-RCA) method that estimates causal relationships between the prediction error and the explanatory variables, without needing a pre-defined causal graph. By simulating synthetic error data, CD-RCA can identify variable contributions to outliers in prediction errors by Shapley values. Extensive simulations show CD-RCA outperforms current heuristic attribution methods, and a sensitivity analysis reveals new patterns where Shapley values may misattribute errors, paving the way for more accurate error attribution methods.
Related papers
- Towards Causal Deep Learning for Vulnerability Detection [31.59558109518435]
We introduce do calculus based causal learning to software engineering models.
Our results show that CausalVul consistently improved the model accuracy, robustness and OOD performance.
arXiv Detail & Related papers (2023-10-12T00:51:06Z) - Causal Disentanglement Hidden Markov Model for Fault Diagnosis [55.90917958154425]
We propose a Causal Disentanglement Hidden Markov model (CDHM) to learn the causality in the bearing fault mechanism.
Specifically, we make full use of the time-series data and progressively disentangle the vibration signal into fault-relevant and fault-irrelevant factors.
To expand the scope of the application, we adopt unsupervised domain adaptation to transfer the learned disentangled representations to other working environments.
arXiv Detail & Related papers (2023-08-06T05:58:45Z) - Episodic Gaussian Process-Based Learning Control with Vanishing Tracking
Errors [10.627020714408445]
We develop an episodic approach for learning GP models, such that an arbitrary tracking accuracy can be guaranteed.
The effectiveness of the derived theory is demonstrated in several simulations.
arXiv Detail & Related papers (2023-07-10T08:43:28Z) - Learning Sample Difficulty from Pre-trained Models for Reliable
Prediction [55.77136037458667]
We propose to utilize large-scale pre-trained models to guide downstream model training with sample difficulty-aware entropy regularization.
We simultaneously improve accuracy and uncertainty calibration across challenging benchmarks.
arXiv Detail & Related papers (2023-04-20T07:29:23Z) - Generalizability Analysis of Graph-based Trajectory Predictor with
Vectorized Representation [29.623692599892365]
Trajectory prediction is one of the essential tasks for autonomous vehicles.
Recent progress in machine learning gave birth to a series of advanced trajectory prediction algorithms.
arXiv Detail & Related papers (2022-08-06T20:19:52Z) - On Calibrated Model Uncertainty in Deep Learning [0.0]
We extend the approximate inference for the loss-calibrated Bayesian framework to dropweights based Bayesian neural networks.
We show that decisions informed by loss-calibrated uncertainty can improve diagnostic performance to a greater extent than straightforward alternatives.
arXiv Detail & Related papers (2022-06-15T20:16:32Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
Real-world machine learning deployments are characterized by mismatches between the source (training) and target (test) distributions.
In this work, we investigate methods for predicting the target domain accuracy using only labeled source data and unlabeled target data.
We propose Average Thresholded Confidence (ATC), a practical method that learns a threshold on the model's confidence, predicting accuracy as the fraction of unlabeled examples.
arXiv Detail & Related papers (2022-01-11T23:01:12Z) - Learning to Predict Trustworthiness with Steep Slope Loss [69.40817968905495]
We study the problem of predicting trustworthiness on real-world large-scale datasets.
We observe that the trustworthiness predictors trained with prior-art loss functions are prone to view both correct predictions and incorrect predictions to be trustworthy.
We propose a novel steep slope loss to separate the features w.r.t. correct predictions from the ones w.r.t. incorrect predictions by two slide-like curves that oppose each other.
arXiv Detail & Related papers (2021-09-30T19:19:09Z) - When and Why does a Model Fail? A Human-in-the-loop Error Detection
Framework for Sentiment Analysis [12.23497603132782]
We propose an error detection framework for sentiment analysis based on explainable features.
Experimental results show that, given limited human-in-the-loop intervention, our method is able to identify erroneous model predictions on unseen data with high precision.
arXiv Detail & Related papers (2021-06-02T05:45:42Z) - Improving Uncertainty Calibration via Prior Augmented Data [56.88185136509654]
Neural networks have proven successful at learning from complex data distributions by acting as universal function approximators.
They are often overconfident in their predictions, which leads to inaccurate and miscalibrated probabilistic predictions.
We propose a solution by seeking out regions of feature space where the model is unjustifiably overconfident, and conditionally raising the entropy of those predictions towards that of the prior distribution of the labels.
arXiv Detail & Related papers (2021-02-22T07:02:37Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.