LIFBench: Evaluating the Instruction Following Performance and Stability of Large Language Models in Long-Context Scenarios
- URL: http://arxiv.org/abs/2411.07037v2
- Date: Mon, 16 Dec 2024 07:53:06 GMT
- Title: LIFBench: Evaluating the Instruction Following Performance and Stability of Large Language Models in Long-Context Scenarios
- Authors: Xiaodong Wu, Minhao Wang, Yichen Liu, Xiaoming Shi, He Yan, Xiangju Lu, Junmin Zhu, Wei Zhang,
- Abstract summary: LIFBench is a scalable dataset designed to evaluate Large Language Models' instruction-following capabilities and stability across long contexts.
LIFEval is a rubric-based assessment method that enables precise, automated scoring of complex LLM responses.
Our work contributes LIFBench and LIFEval as robust tools for assessing LLM performance in complex and long-context settings.
- Score: 16.72802527902692
- License:
- Abstract: As Large Language Models (LLMs) evolve in natural language processing (NLP), their ability to stably follow instructions in long-context inputs has become critical for real-world applications. However, existing benchmarks seldom focus on instruction-following in long-context scenarios or stability on different inputs. To bridge this gap, we introduce LIFBench, a scalable dataset designed to evaluate LLMs' instruction-following capabilities and stability across long contexts. LIFBench comprises three long-context scenarios and eleven diverse tasks, featuring 2,766 instructions generated through an automated expansion method across three dimensions: length, expression, and variables. For evaluation, we propose LIFEval, a rubric-based assessment method that enables precise, automated scoring of complex LLM responses without reliance on LLM-assisted assessments or human judgment. This method allows for a comprehensive analysis of model performance and stability from multiple perspectives. We conduct detailed experiments on 20 prominent LLMs across six length intervals. Our work contributes LIFBench and LIFEval as robust tools for assessing LLM performance in complex and long-context settings, offering valuable insights to guide future advancements in LLM development.
Related papers
- Evaluating Linguistic Capabilities of Multimodal LLMs in the Lens of Few-Shot Learning [15.919493497867567]
This study aims to evaluate the performance of Multimodal Large Language Models (MLLMs) on the VALSE benchmark.
We conducted a comprehensive assessment of state-of-the-art MLLMs, varying in model size and pretraining datasets.
arXiv Detail & Related papers (2024-07-17T11:26:47Z) - CIBench: Evaluating Your LLMs with a Code Interpreter Plugin [68.95137938214862]
We propose an interactive evaluation framework, named CIBench, to comprehensively assess LLMs' ability to utilize code interpreters for data science tasks.
The evaluation dataset is constructed using an LLM-human cooperative approach and simulates an authentic workflow by leveraging consecutive and interactive IPython sessions.
We conduct extensive experiments to analyze the ability of 24 LLMs on CIBench and provide valuable insights for future LLMs in code interpreter utilization.
arXiv Detail & Related papers (2024-07-15T07:43:55Z) - PPTC-R benchmark: Towards Evaluating the Robustness of Large Language
Models for PowerPoint Task Completion [96.47420221442397]
We construct adversarial user instructions by attacking user instructions at sentence, semantic, and multi-language levels.
We test 3 closed-source and 4 open-source LLMs using a benchmark that incorporates robustness settings.
We find that GPT-4 exhibits the highest performance and strong robustness in our benchmark.
arXiv Detail & Related papers (2024-03-06T15:33:32Z) - T-Eval: Evaluating the Tool Utilization Capability of Large Language
Models Step by Step [69.64348626180623]
Large language models (LLM) have achieved remarkable performance on various NLP tasks.
How to evaluate and analyze the tool-utilization capability of LLMs is still under-explored.
We introduce T-Eval to evaluate the tool utilization capability step by step.
arXiv Detail & Related papers (2023-12-21T17:02:06Z) - Evaluating Large Language Models at Evaluating Instruction Following [54.49567482594617]
We introduce a challenging meta-evaluation benchmark, LLMBar, designed to test the ability of an LLM evaluator in discerning instruction-following outputs.
We discover that different evaluators exhibit distinct performance on LLMBar and even the highest-scoring ones have substantial room for improvement.
arXiv Detail & Related papers (2023-10-11T16:38:11Z) - Are Large Language Models Really Robust to Word-Level Perturbations? [68.60618778027694]
We propose a novel rational evaluation approach that leverages pre-trained reward models as diagnostic tools.
Longer conversations manifest the comprehensive grasp of language models in terms of their proficiency in understanding questions.
Our results demonstrate that LLMs frequently exhibit vulnerability to word-level perturbations that are commonplace in daily language usage.
arXiv Detail & Related papers (2023-09-20T09:23:46Z) - MINT: Evaluating LLMs in Multi-turn Interaction with Tools and Language
Feedback [78.60644407028022]
We introduce MINT, a benchmark that evaluates large language models' ability to solve tasks with multi-turn interactions.
LLMs generally benefit from tools and language feedback, with performance gains of 1-8% for each turn of tool use.
LLMs evaluated, supervised instruction-finetuning (SIFT) and reinforcement learning from human feedback (RLHF) generally hurt multi-turn capabilities.
arXiv Detail & Related papers (2023-09-19T15:25:42Z) - Through the Lens of Core Competency: Survey on Evaluation of Large
Language Models [27.271533306818732]
Large language model (LLM) has excellent performance and wide practical uses.
Existing evaluation tasks are difficult to keep up with the wide range of applications in real-world scenarios.
We summarize 4 core competencies of LLM, including reasoning, knowledge, reliability, and safety.
Under this competency architecture, similar tasks are combined to reflect corresponding ability, while new tasks can also be easily added into the system.
arXiv Detail & Related papers (2023-08-15T17:40:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.