Decoding Visual Experience and Mapping Semantics through Whole-Brain Analysis Using fMRI Foundation Models
- URL: http://arxiv.org/abs/2411.07121v2
- Date: Sun, 17 Nov 2024 05:15:38 GMT
- Title: Decoding Visual Experience and Mapping Semantics through Whole-Brain Analysis Using fMRI Foundation Models
- Authors: Yanchen Wang, Adam Turnbull, Tiange Xiang, Yunlong Xu, Sa Zhou, Adnan Masoud, Shekoofeh Azizi, Feng Vankee Lin, Ehsan Adeli,
- Abstract summary: We develop algorithms to enhance our understanding of visual processes by incorporating whole-brain activation maps.
We first compare our method with state-of-the-art approaches to decoding visual processing and show improved predictive semantic accuracy by 43%.
- Score: 10.615012396285337
- License:
- Abstract: Neural decoding, the process of understanding how brain activity corresponds to different stimuli, has been a primary objective in cognitive sciences. Over the past three decades, advancements in functional Magnetic Resonance Imaging and machine learning have greatly improved our ability to map visual stimuli to brain activity, especially in the visual cortex. Concurrently, research has expanded into decoding more complex processes like language and memory across the whole brain, utilizing techniques to handle greater variability and improve signal accuracy. We argue that "seeing" involves more than just mapping visual stimuli onto the visual cortex; it engages the entire brain, as various emotions and cognitive states can emerge from observing different scenes. In this paper, we develop algorithms to enhance our understanding of visual processes by incorporating whole-brain activation maps while individuals are exposed to visual stimuli. We utilize large-scale fMRI encoders and Image generative models pre-trained on large public datasets, which are then fine-tuned through Image-fMRI contrastive learning. Our models hence can decode visual experience across the entire cerebral cortex, surpassing the traditional confines of the visual cortex. We first compare our method with state-of-the-art approaches to decoding visual processing and show improved predictive semantic accuracy by 43%. A network ablation analysis suggests that beyond the visual cortex, the default mode network contributes most to decoding stimuli, in line with the proposed role of this network in sense-making and semantic processing. Additionally, we implemented zero-shot imagination decoding on an extra validation dataset, achieving a p-value of 0.0206 for mapping the reconstructed images and ground-truth text stimuli, which substantiates the model's capability to capture semantic meanings across various scenarios.
Related papers
- MindGPT: Interpreting What You See with Non-invasive Brain Recordings [24.63828455553959]
We introduce a non-invasive neural decoder, termed as MindGPT, which interprets perceived visual stimuli into natural languages from fMRI signals.
Our experiments show that the generated word sequences truthfully represented the visual information conveyed in the seen stimuli.
arXiv Detail & Related papers (2023-09-27T15:35:20Z) - Unidirectional brain-computer interface: Artificial neural network
encoding natural images to fMRI response in the visual cortex [12.1427193917406]
We propose an artificial neural network dubbed VISION to mimic the human brain and show how it can foster neuroscientific inquiries.
VISION successfully predicts human hemodynamic responses as fMRI voxel values to visual inputs with an accuracy exceeding state-of-the-art performance by 45%.
arXiv Detail & Related papers (2023-09-26T15:38:26Z) - Improving visual image reconstruction from human brain activity using
latent diffusion models via multiple decoded inputs [2.4366811507669124]
Integration of deep learning and neuroscience has led to improvements in the analysis of brain activity.
The reconstruction of visual experience from human brain activity is an area that has particularly benefited.
We examine the extent to which various additional decoding techniques affect the performance of visual experience reconstruction.
arXiv Detail & Related papers (2023-06-20T13:48:02Z) - Brain Captioning: Decoding human brain activity into images and text [1.5486926490986461]
We present an innovative method for decoding brain activity into meaningful images and captions.
Our approach takes advantage of cutting-edge image captioning models and incorporates a unique image reconstruction pipeline.
We evaluate our methods using quantitative metrics for both generated captions and images.
arXiv Detail & Related papers (2023-05-19T09:57:19Z) - Controllable Mind Visual Diffusion Model [58.83896307930354]
Brain signal visualization has emerged as an active research area, serving as a critical interface between the human visual system and computer vision models.
We propose a novel approach, referred to as Controllable Mind Visual Model Diffusion (CMVDM)
CMVDM extracts semantic and silhouette information from fMRI data using attribute alignment and assistant networks.
We then leverage a control model to fully exploit the extracted information for image synthesis, resulting in generated images that closely resemble the visual stimuli in terms of semantics and silhouette.
arXiv Detail & Related papers (2023-05-17T11:36:40Z) - Joint fMRI Decoding and Encoding with Latent Embedding Alignment [77.66508125297754]
We introduce a unified framework that addresses both fMRI decoding and encoding.
Our model concurrently recovers visual stimuli from fMRI signals and predicts brain activity from images within a unified framework.
arXiv Detail & Related papers (2023-03-26T14:14:58Z) - BrainCLIP: Bridging Brain and Visual-Linguistic Representation Via CLIP
for Generic Natural Visual Stimulus Decoding [51.911473457195555]
BrainCLIP is a task-agnostic fMRI-based brain decoding model.
It bridges the modality gap between brain activity, image, and text.
BrainCLIP can reconstruct visual stimuli with high semantic fidelity.
arXiv Detail & Related papers (2023-02-25T03:28:54Z) - Semantic Brain Decoding: from fMRI to conceptually similar image
reconstruction of visual stimuli [0.29005223064604074]
We propose a novel approach to brain decoding that also relies on semantic and contextual similarity.
We employ an fMRI dataset of natural image vision and create a deep learning decoding pipeline inspired by the existence of both bottom-up and top-down processes in human vision.
We produce reconstructions of visual stimuli that match the original content very well on a semantic level, surpassing the state of the art in previous literature.
arXiv Detail & Related papers (2022-12-13T16:54:08Z) - BI AVAN: Brain inspired Adversarial Visual Attention Network [67.05560966998559]
We propose a brain-inspired adversarial visual attention network (BI-AVAN) to characterize human visual attention directly from functional brain activity.
Our model imitates the biased competition process between attention-related/neglected objects to identify and locate the visual objects in a movie frame the human brain focuses on in an unsupervised manner.
arXiv Detail & Related papers (2022-10-27T22:20:36Z) - Multi-Modal Masked Autoencoders for Medical Vision-and-Language
Pre-Training [62.215025958347105]
We propose a self-supervised learning paradigm with multi-modal masked autoencoders.
We learn cross-modal domain knowledge by reconstructing missing pixels and tokens from randomly masked images and texts.
arXiv Detail & Related papers (2022-09-15T07:26:43Z) - Peripheral Vision Transformer [52.55309200601883]
We take a biologically inspired approach and explore to model peripheral vision in deep neural networks for visual recognition.
We propose to incorporate peripheral position encoding to the multi-head self-attention layers to let the network learn to partition the visual field into diverse peripheral regions given training data.
We evaluate the proposed network, dubbed PerViT, on the large-scale ImageNet dataset and systematically investigate the inner workings of the model for machine perception.
arXiv Detail & Related papers (2022-06-14T12:47:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.