Conditional simulation via entropic optimal transport: Toward non-parametric estimation of conditional Brenier maps
- URL: http://arxiv.org/abs/2411.07154v1
- Date: Mon, 11 Nov 2024 17:32:47 GMT
- Title: Conditional simulation via entropic optimal transport: Toward non-parametric estimation of conditional Brenier maps
- Authors: Ricardo Baptista, Aram-Alexandre Pooladian, Michael Brennan, Youssef Marzouk, Jonathan Niles-Weed,
- Abstract summary: Conditional simulation is a fundamental task in statistical modeling.
One promising approach is to construct conditional Brenier maps, where the components of the map pushforward a reference distribution to conditionals of the target.
We propose a non-parametric estimator for conditional Brenier maps based on the computational scalability of emphentropic optimal transport.
- Score: 13.355769319031184
- License:
- Abstract: Conditional simulation is a fundamental task in statistical modeling: Generate samples from the conditionals given finitely many data points from a joint distribution. One promising approach is to construct conditional Brenier maps, where the components of the map pushforward a reference distribution to conditionals of the target. While many estimators exist, few, if any, come with statistical or algorithmic guarantees. To this end, we propose a non-parametric estimator for conditional Brenier maps based on the computational scalability of \emph{entropic} optimal transport. Our estimator leverages a result of Carlier et al. (2010), which shows that optimal transport maps under a rescaled quadratic cost asymptotically converge to conditional Brenier maps; our estimator is precisely the entropic analogues of these converging maps. We provide heuristic justifications for choosing the scaling parameter in the cost as a function of the number of samples by fully characterizing the Gaussian setting. We conclude by comparing the performance of the estimator to other machine learning and non-parametric approaches on benchmark datasets and Bayesian inference problems.
Related papers
- Multivariate root-n-consistent smoothing parameter free matching estimators and estimators of inverse density weighted expectations [51.000851088730684]
We develop novel modifications of nearest-neighbor and matching estimators which converge at the parametric $sqrt n $-rate.
We stress that our estimators do not involve nonparametric function estimators and in particular do not rely on sample-size dependent parameters smoothing.
arXiv Detail & Related papers (2024-07-11T13:28:34Z) - von Mises Quasi-Processes for Bayesian Circular Regression [57.88921637944379]
We explore a family of expressive and interpretable distributions over circle-valued random functions.
The resulting probability model has connections with continuous spin models in statistical physics.
For posterior inference, we introduce a new Stratonovich-like augmentation that lends itself to fast Markov Chain Monte Carlo sampling.
arXiv Detail & Related papers (2024-06-19T01:57:21Z) - A generative flow for conditional sampling via optimal transport [1.0486135378491266]
This work proposes a non-parametric generative model that iteratively maps reference samples to the target.
The model uses block-triangular transport maps, whose components are shown to characterize conditionals of the target distribution.
These maps arise from solving an optimal transport problem with a weighted $L2$ cost function, thereby extending the data-driven approach in [Trigila and Tabak, 2016] for conditional sampling.
arXiv Detail & Related papers (2023-07-09T05:36:26Z) - Minimax estimation of discontinuous optimal transport maps: The
semi-discrete case [14.333765302506658]
We consider the problem of estimating the optimal transport map between two probability distributions, $P$ and $Q$ in $mathbb Rd$.
We show that an estimator based on entropic optimal transport converges at the minimax-optimal rate $n-1/2$, independent of dimension.
arXiv Detail & Related papers (2023-01-26T18:41:38Z) - Gaussian process regression and conditional Karhunen-Lo\'{e}ve models
for data assimilation in inverse problems [68.8204255655161]
We present a model inversion algorithm, CKLEMAP, for data assimilation and parameter estimation in partial differential equation models.
The CKLEMAP method provides better scalability compared to the standard MAP method.
arXiv Detail & Related papers (2023-01-26T18:14:12Z) - Kernel-based off-policy estimation without overlap: Instance optimality
beyond semiparametric efficiency [53.90687548731265]
We study optimal procedures for estimating a linear functional based on observational data.
For any convex and symmetric function class $mathcalF$, we derive a non-asymptotic local minimax bound on the mean-squared error.
arXiv Detail & Related papers (2023-01-16T02:57:37Z) - Near-optimal estimation of smooth transport maps with kernel
sums-of-squares [81.02564078640275]
Under smoothness conditions, the squared Wasserstein distance between two distributions could be efficiently computed with appealing statistical error upper bounds.
The object of interest for applications such as generative modeling is the underlying optimal transport map.
We propose the first tractable algorithm for which the statistical $L2$ error on the maps nearly matches the existing minimax lower-bounds for smooth map estimation.
arXiv Detail & Related papers (2021-12-03T13:45:36Z) - Entropic estimation of optimal transport maps [15.685006881635209]
We develop a method for estimating the optimal map between two distributions over $mathbbRd$ with rigorous finite-sample guarantees.
We show that our estimator is easy to compute using Sinkhorn's algorithm.
arXiv Detail & Related papers (2021-09-24T14:57:26Z) - Plugin Estimation of Smooth Optimal Transport Maps [25.23336043463205]
We show that a number of natural estimators for the optimal transport map between two distributions are minimax optimal.
Our work provides new bounds on the risk of corresponding plugin estimators for the quadratic Wasserstein distance.
arXiv Detail & Related papers (2021-07-26T17:58:48Z) - Comparing Probability Distributions with Conditional Transport [63.11403041984197]
We propose conditional transport (CT) as a new divergence and approximate it with the amortized CT (ACT) cost.
ACT amortizes the computation of its conditional transport plans and comes with unbiased sample gradients that are straightforward to compute.
On a wide variety of benchmark datasets generative modeling, substituting the default statistical distance of an existing generative adversarial network with ACT is shown to consistently improve the performance.
arXiv Detail & Related papers (2020-12-28T05:14:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.