Analysis and Forecasting of the Dynamics of a Floating Wind Turbine Using Dynamic Mode Decomposition
- URL: http://arxiv.org/abs/2411.07263v1
- Date: Fri, 08 Nov 2024 18:38:29 GMT
- Title: Analysis and Forecasting of the Dynamics of a Floating Wind Turbine Using Dynamic Mode Decomposition
- Authors: Giorgio Palma, Andrea Bardazzi, Alessia Lucarelli, Chiara Pilloton, Andrea Serani, Claudio Lugni, Matteo Diez,
- Abstract summary: This article presents a data-driven equation-free modeling of the dynamics of a hexafloat floating offshore wind turbine based on the Dynamic Mode Decomposition (DMD)
A forecasting algorithm for the motions, accelerations, and forces acting on the floating system is developed.
Results show the approach's capability for short-term future estimates of the system's state, which can be used real-time prediction and control.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This article presents a data-driven equation-free modeling of the dynamics of a hexafloat floating offshore wind turbine based on the Dynamic Mode Decomposition (DMD). The DMD is here used to provide a modal analysis and extract knowledge from the dynamic system. A forecasting algorithm for the motions, accelerations, and forces acting on the floating system, as well as the height of the incoming waves, the wind speed, and the power extracted by the wind turbine, is developed by using a methodological extension called Hankel-DMD, that includes time-delayed copies of the states in an augmented state vector. All the analyses are performed on experimental data collected from an operating prototype. The quality of the forecasts obtained varying two main hyperparameters of the algorithm, namely the number of delayed copies and the length of the observation time, is assessed using three different error metrics, each analyzing complementary aspects of the prediction. A statistical analysis exposed the existence of optimal values for the algorithm hyperparameters. Results show the approach's capability for short-term future estimates of the system's state, which can be used for real-time prediction and control. Furthermore, a novel Stochastic Hankel-DMD formulation is introduced by considering hyperparameters as stochastic variables. The stochastic version of the method not only enriches the prediction with its related uncertainty but is also found to improve the normalized root mean square error up to 10% on a statistical basis compared to the deterministic counterpart.
Related papers
- Model-free system identification of surface ships in waves via Hankel dynamic mode decomposition with control [0.0]
This study introduces and compares the Hankel dynamic mode decomposition with control (Hankel-DMDc)
The proposed DMDc methods create a reduced-order model using limited data from the system state and incoming wave elevation histories.
The results indicate that the proposed methods effectively identify the dynamic system in analysis.
arXiv Detail & Related papers (2025-02-17T11:11:14Z) - MultiPDENet: PDE-embedded Learning with Multi-time-stepping for Accelerated Flow Simulation [48.41289705783405]
We propose a PDE-embedded network with multiscale time stepping (MultiPDENet)
In particular, we design a convolutional filter based on the structure of finite difference with a small number of parameters to optimize.
A Physics Block with a 4th-order Runge-Kutta integrator at the fine time scale is established that embeds the structure of PDEs to guide the prediction.
arXiv Detail & Related papers (2025-01-27T12:15:51Z) - Estimation of System Parameters Including Repeated Cross-Sectional Data through Emulator-Informed Deep Generative Model [5.3060535072023844]
In politics, economics, and biology, available data are often independently collected at distinct time points from different subjects.
Conventional optimization techniques struggle to accurately estimate DE parameters when RCS data exhibit various heterogeneities.
We propose a new estimation method called the emulator-informed deep-generative model (EIDGM)
EIDGM integrates a physics-informed neural network-based emulator that immediately generates DE solutions and a Wasserstein generative adversarial network-based parameter generator.
arXiv Detail & Related papers (2024-12-27T08:19:23Z) - Parametric model reduction of mean-field and stochastic systems via higher-order action matching [1.1509084774278489]
We learn models of population dynamics of physical systems that feature gradient and mean-field effects.
We show that our approach accurately predicts population dynamics over a wide range of parameters and outperforms state-of-the-art diffusion-based and flow-based modeling.
arXiv Detail & Related papers (2024-10-15T19:05:28Z) - Comparative Evaluation of Metaheuristic Algorithms for Hyperparameter
Selection in Short-Term Weather Forecasting [0.0]
This paper explores the application of metaheuristic algorithms, namely Genetic Algorithm (GA), Differential Evolution (DE) and Particle Swarm Optimization (PSO)
We evaluate their performance in weather forecasting based on metrics such as Mean Squared Error (MSE) and Mean Absolute Percentage Error (MAPE)
arXiv Detail & Related papers (2023-09-05T22:13:35Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
We propose a probabilistic model called ME-NODE to incorporate (fixed + random) mixed effects for analyzing panel data.
We show that our model can be derived using smooth approximations of SDEs provided by the Wong-Zakai theorem.
We then derive Evidence Based Lower Bounds for ME-NODE, and develop (efficient) training algorithms.
arXiv Detail & Related papers (2022-02-18T22:41:51Z) - Inverting brain grey matter models with likelihood-free inference: a
tool for trustable cytoarchitecture measurements [62.997667081978825]
characterisation of the brain grey matter cytoarchitecture with quantitative sensitivity to soma density and volume remains an unsolved challenge in dMRI.
We propose a new forward model, specifically a new system of equations, requiring a few relatively sparse b-shells.
We then apply modern tools from Bayesian analysis known as likelihood-free inference (LFI) to invert our proposed model.
arXiv Detail & Related papers (2021-11-15T09:08:27Z) - Physics-constrained deep neural network method for estimating parameters
in a redox flow battery [68.8204255655161]
We present a physics-constrained deep neural network (PCDNN) method for parameter estimation in the zero-dimensional (0D) model of the vanadium flow battery (VRFB)
We show that the PCDNN method can estimate model parameters for a range of operating conditions and improve the 0D model prediction of voltage.
We also demonstrate that the PCDNN approach has an improved generalization ability for estimating parameter values for operating conditions not used in the training.
arXiv Detail & Related papers (2021-06-21T23:42:58Z) - Decadal Forecasts with ResDMD: a Residual DMD Neural Network [0.0]
Operational forecasting centers are investing in decadal (1-10 year) forecast systems to support long-term decision making for a more climate-resilient society.
One method that has previously been employed is the Dynamic Mode Decomposition (DMD) algorithm.
We investigate an extension to the DMD that explicitly represents the non-linear terms as a neural network.
arXiv Detail & Related papers (2021-06-21T13:49:43Z) - Dynamic Mode Decomposition in Adaptive Mesh Refinement and Coarsening
Simulations [58.720142291102135]
Dynamic Mode Decomposition (DMD) is a powerful data-driven method used to extract coherent schemes.
This paper proposes a strategy to enable DMD to extract from observations with different mesh topologies and dimensions.
arXiv Detail & Related papers (2021-04-28T22:14:25Z) - Leveraging Global Parameters for Flow-based Neural Posterior Estimation [90.21090932619695]
Inferring the parameters of a model based on experimental observations is central to the scientific method.
A particularly challenging setting is when the model is strongly indeterminate, i.e., when distinct sets of parameters yield identical observations.
We present a method for cracking such indeterminacy by exploiting additional information conveyed by an auxiliary set of observations sharing global parameters.
arXiv Detail & Related papers (2021-02-12T12:23:13Z) - Robots State Estimation and Observability Analysis Based on Statistical
Motion Models [10.941793802354953]
This paper presents a generic motion model to capture mobile robots' dynamic behaviors (translation and rotation)
The model is based on statistical models driven by white random processes and is formulated into a full state estimation algorithm based on the error-state extended Kalman filtering framework (ESEKF)
A novel texttextbfitthin set concept is introduced to characterize the unobservable subset of the system states.
arXiv Detail & Related papers (2020-10-12T18:35:33Z) - Physics-Informed Gaussian Process Regression for Probabilistic States
Estimation and Forecasting in Power Grids [67.72249211312723]
Real-time state estimation and forecasting is critical for efficient operation of power grids.
PhI-GPR is presented and used for forecasting and estimating the phase angle, angular speed, and wind mechanical power of a three-generator power grid system.
We demonstrate that the proposed PhI-GPR method can accurately forecast and estimate both observed and unobserved states.
arXiv Detail & Related papers (2020-10-09T14:18:31Z) - Stochastically forced ensemble dynamic mode decomposition for
forecasting and analysis of near-periodic systems [65.44033635330604]
We introduce a novel load forecasting method in which observed dynamics are modeled as a forced linear system.
We show that its use of intrinsic linear dynamics offers a number of desirable properties in terms of interpretability and parsimony.
Results are presented for a test case using load data from an electrical grid.
arXiv Detail & Related papers (2020-10-08T20:25:52Z) - DEFM: Delay E mbedding based Forecast Machine for Time Series Forecasting by Spatiotemporal Information Transformation [27.196988830046756]
Delay-Embedding-based Forecast Machine (DEFM) predicts future values of a target variable in a self-supervised manner based on high-dimensional observations.
DEFM uses deep neural networks to effectively extract both the spatially and temporally associated information from observed time series.
The DEFM can accurately predict future parameters by transforming parameters through the delay embeddings of a target variable.
arXiv Detail & Related papers (2020-05-16T01:48:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.