Exploring Variational Autoencoders for Medical Image Generation: A Comprehensive Study
- URL: http://arxiv.org/abs/2411.07348v1
- Date: Mon, 11 Nov 2024 20:12:13 GMT
- Title: Exploring Variational Autoencoders for Medical Image Generation: A Comprehensive Study
- Authors: Khadija Rais, Mohamed Amroune, Abdelmadjid Benmachiche, Mohamed Yassine Haouam,
- Abstract summary: Variational autoencoder (VAE) is one of the most common techniques in the field of medical image generation.
VAE has advantages including improving datasets by adding samples in smaller datasets and in datasets with imbalanced classes.
- Score: 0.3749861135832073
- License:
- Abstract: Variational autoencoder (VAE) is one of the most common techniques in the field of medical image generation, where this architecture has shown advanced researchers in recent years and has developed into various architectures. VAE has advantages including improving datasets by adding samples in smaller datasets and in datasets with imbalanced classes, and this is how data augmentation works. This paper provides a comprehensive review of studies on VAE in medical imaging, with a special focus on their ability to create synthetic images close to real data so that they can be used for data augmentation. This study reviews important architectures and methods used to develop VAEs for medical images and provides a comparison with other generative models such as GANs on issues such as image quality, and low diversity of generated samples. We discuss recent developments and applications in several medical fields highlighting the ability of VAEs to improve segmentation and classification accuracy.
Related papers
- Semi-Truths: A Large-Scale Dataset of AI-Augmented Images for Evaluating Robustness of AI-Generated Image detectors [62.63467652611788]
We introduce SEMI-TRUTHS, featuring 27,600 real images, 223,400 masks, and 1,472,700 AI-augmented images.
Each augmented image is accompanied by metadata for standardized and targeted evaluation of detector robustness.
Our findings suggest that state-of-the-art detectors exhibit varying sensitivities to the types and degrees of perturbations, data distributions, and augmentation methods used.
arXiv Detail & Related papers (2024-11-12T01:17:27Z) - Coupling AI and Citizen Science in Creation of Enhanced Training Dataset for Medical Image Segmentation [3.7274206780843477]
We introduce a robust and versatile framework that combines AI and crowdsourcing to improve the quality and quantity of medical image datasets.
Our approach utilise a user-friendly online platform that enables a diverse group of crowd annotators to label medical images efficiently.
We employ pix2pixGAN, a generative AI model, to expand the training dataset with synthetic images that capture realistic morphological features.
arXiv Detail & Related papers (2024-09-04T21:22:54Z) - VISION-MAE: A Foundation Model for Medical Image Segmentation and
Classification [36.8105960525233]
We present a novel foundation model, VISION-MAE, specifically designed for medical imaging.
VISION-MAE is trained on a dataset of 2.5 million unlabeled images from various modalities.
It is then adapted to classification and segmentation tasks using explicit labels.
arXiv Detail & Related papers (2024-02-01T21:45:12Z) - Additional Look into GAN-based Augmentation for Deep Learning COVID-19
Image Classification [57.1795052451257]
We study the dependence of the GAN-based augmentation performance on dataset size with a focus on small samples.
We train StyleGAN2-ADA with both sets and then, after validating the quality of generated images, we use trained GANs as one of the augmentations approaches in multi-class classification problems.
The GAN-based augmentation approach is found to be comparable with classical augmentation in the case of medium and large datasets but underperforms in the case of smaller datasets.
arXiv Detail & Related papers (2024-01-26T08:28:13Z) - GAN-GA: A Generative Model based on Genetic Algorithm for Medical Image
Generation [0.0]
Generative models offer a promising solution for addressing medical image shortage problems.
This paper proposes the GAN-GA, a generative model optimized by embedding a genetic algorithm.
The proposed model enhances image fidelity and diversity while preserving distinctive features.
arXiv Detail & Related papers (2023-12-30T20:16:45Z) - This Intestine Does Not Exist: Multiscale Residual Variational
Autoencoder for Realistic Wireless Capsule Endoscopy Image Generation [7.430724826764835]
A novel Variational Autoencoder architecture is proposed, namely "This Intestine Does not Exist" (TIDE)
The proposed architecture comprises multiscale feature extraction convolutional blocks and residual connections, which enable the generation of high-quality and diverse datasets.
Contrary to the current approaches, which are oriented towards the augmentation of the available datasets, this study demonstrates that using TIDE, real WCE datasets can be fully substituted.
arXiv Detail & Related papers (2023-02-04T11:49:38Z) - MedSegDiff-V2: Diffusion based Medical Image Segmentation with
Transformer [53.575573940055335]
We propose a novel Transformer-based Diffusion framework, called MedSegDiff-V2.
We verify its effectiveness on 20 medical image segmentation tasks with different image modalities.
arXiv Detail & Related papers (2023-01-19T03:42:36Z) - Cutting-Splicing data augmentation: A novel technology for medical image
segmentation [16.48154487667144]
We developed the cutting-splicing data augmentation (CS-DA) method, a novel data augmentation technology for medical image segmentation.
CS-DA augments the dataset by splicing different position components cut from different original medical images into a new image.
Compared with classical data augmentation technologies, CS-DA is simpler and more robust.
arXiv Detail & Related papers (2022-10-17T13:52:01Z) - Medical Transformer: Gated Axial-Attention for Medical Image
Segmentation [73.98974074534497]
We study the feasibility of using Transformer-based network architectures for medical image segmentation tasks.
We propose a Gated Axial-Attention model which extends the existing architectures by introducing an additional control mechanism in the self-attention module.
To train the model effectively on medical images, we propose a Local-Global training strategy (LoGo) which further improves the performance.
arXiv Detail & Related papers (2021-02-21T18:35:14Z) - Domain Shift in Computer Vision models for MRI data analysis: An
Overview [64.69150970967524]
Machine learning and computer vision methods are showing good performance in medical imagery analysis.
Yet only a few applications are now in clinical use.
Poor transferability of themodels to data from different sources or acquisition domains is one of the reasons for that.
arXiv Detail & Related papers (2020-10-14T16:34:21Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
We propose improvements over previous GAN-based medical image synthesis methods by jointly encoding the intrinsic relationship of geometry and shape.
The proposed method outperforms state-of-the-art segmentation methods on the public RETOUCH dataset having images captured from different acquisition procedures.
arXiv Detail & Related papers (2020-03-31T11:50:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.