LLM App Squatting and Cloning
- URL: http://arxiv.org/abs/2411.07518v1
- Date: Tue, 12 Nov 2024 03:32:30 GMT
- Title: LLM App Squatting and Cloning
- Authors: Yinglin Xie, Xinyi Hou, Yanjie Zhao, Kai Chen, Haoyu Wang,
- Abstract summary: Impersonation tactics, such as app squatting and app cloning, have posed longstanding challenges in mobile app stores.
We present the first large-scale analysis of LLM app squatting and cloning using our custom-built tool, LLMappCrazy.
- Score: 12.626589260776404
- License:
- Abstract: Impersonation tactics, such as app squatting and app cloning, have posed longstanding challenges in mobile app stores, where malicious actors exploit the names and reputations of popular apps to deceive users. With the rapid growth of Large Language Model (LLM) stores like GPT Store and FlowGPT, these issues have similarly surfaced, threatening the integrity of the LLM app ecosystem. In this study, we present the first large-scale analysis of LLM app squatting and cloning using our custom-built tool, LLMappCrazy. LLMappCrazy covers 14 squatting generation techniques and integrates Levenshtein distance and BERT-based semantic analysis to detect cloning by analyzing app functional similarities. Using this tool, we generated variations of the top 1000 app names and found over 5,000 squatting apps in the dataset. Additionally, we observed 3,509 squatting apps and 9,575 cloning cases across six major platforms. After sampling, we find that 18.7% of the squatting apps and 4.9% of the cloning apps exhibited malicious behavior, including phishing, malware distribution, fake content dissemination, and aggressive ad injection.
Related papers
- LLM-Cure: LLM-based Competitor User Review Analysis for Feature Enhancement [0.7285835869818668]
We propose a large language model (LLM)-based Competitive User Review Analysis for Feature Enhancement.
LLM-Cure identifies and categorizes features within reviews by applying LLMs.
When provided with a complaint in a user review, LLM-Cure curates highly rated (4 and 5 stars) reviews in competing apps related to the complaint.
arXiv Detail & Related papers (2024-09-24T04:17:21Z) - See What LLMs Cannot Answer: A Self-Challenge Framework for Uncovering LLM Weaknesses [51.975495361024606]
We propose a Self-Challenge evaluation framework with human-in-the-loop.
Starting from seed instances that GPT-4 fails to answer, we prompt GPT-4 to summarize error patterns that can be used to generate new instances.
We then build a benchmark, SC-G4, consisting of 1,835 instances generated by GPT-4 using these patterns, with human-annotated gold responses.
arXiv Detail & Related papers (2024-08-16T19:01:52Z) - Detecting and Characterising Mobile App Metamorphosis in Google Play Store [0.0]
We propose a novel and efficient multi-modal search methodology to identify apps undergoing metamorphosis.
Our methodology uncovers various metamorphosis scenarios, including re-births, re-branding, re-purposing, and others.
We shed light on the concealed security and privacy risks that lurk within, potentially impacting even tech-savvy end-users.
arXiv Detail & Related papers (2024-07-19T03:26:40Z) - On the (In)Security of LLM App Stores [5.667013605202579]
In this study, we propose a three-layer concern framework to identify the potential security risks of LLM apps.
Our research integrates static and dynamic analysis, the development of a large-scale toxic word dictionary, and automated monitoring tools.
We uncovered that 15,146 apps had misleading descriptions, 1,366 collected sensitive personal information against their privacy policies, and 15,996 generated harmful content.
arXiv Detail & Related papers (2024-07-11T12:03:32Z) - Are you still on track!? Catching LLM Task Drift with Activations [55.75645403965326]
Task drift allows attackers to exfiltrate data or influence the LLM's output for other users.
We show that a simple linear classifier can detect drift with near-perfect ROC AUC on an out-of-distribution test set.
We observe that this approach generalizes surprisingly well to unseen task domains, such as prompt injections, jailbreaks, and malicious instructions.
arXiv Detail & Related papers (2024-06-02T16:53:21Z) - Images are Achilles' Heel of Alignment: Exploiting Visual Vulnerabilities for Jailbreaking Multimodal Large Language Models [107.88745040504887]
We study the harmlessness alignment problem of multimodal large language models (MLLMs)
Inspired by this, we propose a novel jailbreak method named HADES, which hides and amplifies the harmfulness of the malicious intent within the text input.
Experimental results show that HADES can effectively jailbreak existing MLLMs, which achieves an average Attack Success Rate (ASR) of 90.26% for LLaVA-1.5 and 71.60% for Gemini Pro Vision.
arXiv Detail & Related papers (2024-03-14T18:24:55Z) - Tensor Trust: Interpretable Prompt Injection Attacks from an Online Game [86.66627242073724]
This paper presents a dataset of over 126,000 prompt injection attacks and 46,000 prompt-based "defenses" against prompt injection.
To the best of our knowledge, this is currently the largest dataset of human-generated adversarial examples for instruction-following LLMs.
We also use the dataset to create a benchmark for resistance to two types of prompt injection, which we refer to as prompt extraction and prompt hijacking.
arXiv Detail & Related papers (2023-11-02T06:13:36Z) - SmoothLLM: Defending Large Language Models Against Jailbreaking Attacks [99.23352758320945]
We propose SmoothLLM, the first algorithm designed to mitigate jailbreaking attacks on large language models (LLMs)
Based on our finding that adversarially-generated prompts are brittle to character-level changes, our defense first randomly perturbs multiple copies of a given input prompt, and then aggregates the corresponding predictions to detect adversarial inputs.
arXiv Detail & Related papers (2023-10-05T17:01:53Z) - Erasing Labor with Labor: Dark Patterns and Lockstep Behaviors on Google
Play [13.658284581863839]
Google Play's policy forbids the use of incentivized installs, ratings, and reviews to manipulate the placement of apps.
We examine install-incentivizing apps through a socio-technical lens and perform a mixed-methods analysis of their reviews and permissions.
Our dataset contains 319K reviews collected daily over five months from 60 such apps that cumulatively account for over 160.5M installs.
We find evidence of fraudulent reviews on install-incentivizing apps, following which we model them as an edge stream in a dynamic bipartite graph of apps and reviewers.
arXiv Detail & Related papers (2022-02-09T16:54:27Z) - Emerging App Issue Identification via Online Joint Sentiment-Topic
Tracing [66.57888248681303]
We propose a novel emerging issue detection approach named MERIT.
Based on the AOBST model, we infer the topics negatively reflected in user reviews for one app version.
Experiments on popular apps from Google Play and Apple's App Store demonstrate the effectiveness of MERIT.
arXiv Detail & Related papers (2020-08-23T06:34:05Z) - A Multi-modal Neural Embeddings Approach for Detecting Mobile
Counterfeit Apps: A Case Study on Google Play Store [4.5170827242233145]
This paper proposes to leverage the recent advances in deep learning methods to create image and text embeddings.
We show that a novel approach of combining content embeddings and style embeddings outperforms the baseline methods for image similarity.
We present an analysis of approximately 1.2 million apps from Google Play Store and identify a set of potential counterfeits for top-10,000 popular apps.
arXiv Detail & Related papers (2020-06-02T07:10:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.