xCG: Explainable Cell Graphs for Survival Prediction in Non-Small Cell Lung Cancer
- URL: http://arxiv.org/abs/2411.07643v1
- Date: Tue, 12 Nov 2024 08:53:49 GMT
- Title: xCG: Explainable Cell Graphs for Survival Prediction in Non-Small Cell Lung Cancer
- Authors: Marvin Sextro, Gabriel Dernbach, Kai Standvoss, Simon Schallenberg, Frederick Klauschen, Klaus-Robert Müller, Maximilian Alber, Lukas Ruff,
- Abstract summary: We present an explainable cell graph (xCG) approach for survival prediction.
We validate our model on a public cohort of imaging mass (IMC) data for 416 cases of lung adenocarcinoma.
- Score: 10.515405477496735
- License:
- Abstract: Understanding how deep learning models predict oncology patient risk can provide critical insights into disease progression, support clinical decision-making, and pave the way for trustworthy and data-driven precision medicine. Building on recent advances in the spatial modeling of the tumor microenvironment using graph neural networks, we present an explainable cell graph (xCG) approach for survival prediction. We validate our model on a public cohort of imaging mass cytometry (IMC) data for 416 cases of lung adenocarcinoma. We explain survival predictions in terms of known phenotypes on the cell level by computing risk attributions over cell graphs, for which we propose an efficient grid-based layer-wise relevance propagation (LRP) method. Our ablation studies highlight the importance of incorporating the cancer stage and model ensembling to improve the quality of risk estimates. Our xCG method, together with the IMC data, is made publicly available to support further research.
Related papers
- Embedding-based Multimodal Learning on Pan-Squamous Cell Carcinomas for Improved Survival Outcomes [0.0]
PARADIGM is a framework that learns from multimodal, heterogeneous datasets to improve clinical outcome prediction.
We train GNNs on pan-Squamous Cell Carcinomas and validate our approach on Moffitt Cancer Center lung SCC data.
Our solution aims to understand the patient's circumstances comprehensively, offering insights on heterogeneous data integration and the benefits of converging maximum data views.
arXiv Detail & Related papers (2024-06-11T22:19:14Z) - Survival Prediction Across Diverse Cancer Types Using Neural Networks [40.392772795903795]
Gastric cancer and Colon adenocarcinoma represent widespread and challenging malignancies.
Medical community has embraced the 5-year survival rate as a vital metric for estimating patient outcomes.
This study introduces a pioneering approach to enhance survival prediction models for gastric and Colon adenocarcinoma patients.
arXiv Detail & Related papers (2024-04-11T21:47:13Z) - MM-SurvNet: Deep Learning-Based Survival Risk Stratification in Breast
Cancer Through Multimodal Data Fusion [18.395418853966266]
We propose a novel deep learning approach for breast cancer survival risk stratification.
We employ vision transformers, specifically the MaxViT model, for image feature extraction, and self-attention to capture intricate image relationships at the patient level.
A dual cross-attention mechanism fuses these features with genetic data, while clinical data is incorporated at the final layer to enhance predictive accuracy.
arXiv Detail & Related papers (2024-02-19T02:31:36Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
This paper introduces a novel, end-to-end diffusion-based risk prediction model, named MedDiffusion.
It enhances risk prediction performance by creating synthetic patient data during training to enlarge sample space.
It discerns hidden relationships between patient visits using a step-wise attention mechanism, enabling the model to automatically retain the most vital information for generating high-quality data.
arXiv Detail & Related papers (2023-10-04T01:36:30Z) - SurvLatent ODE : A Neural ODE based time-to-event model with competing
risks for longitudinal data improves cancer-associated Deep Vein Thrombosis
(DVT) prediction [68.8204255655161]
We propose a generative time-to-event model, SurvLatent ODE, which parameterizes a latent representation under irregularly sampled data.
Our model then utilizes the latent representation to flexibly estimate survival times for multiple competing events without specifying shapes of event-specific hazard function.
SurvLatent ODE outperforms the current clinical standard Khorana Risk scores for stratifying DVT risk groups.
arXiv Detail & Related papers (2022-04-20T17:28:08Z) - Breast Cancer Induced Bone Osteolysis Prediction Using Temporal
Variational Auto-Encoders [65.95959936242993]
We develop a deep learning framework that can accurately predict and visualize the progression of osteolytic bone lesions.
It will assist in planning and evaluating treatment strategies to prevent skeletal related events (SREs) in breast cancer patients.
arXiv Detail & Related papers (2022-03-20T21:00:10Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
We propose a graph-based sparse principal component analysis (GS-PCA) network, for automated detection of cancerous lesions on histological lung slides stained by hematoxylin and eosin (H&E)
We evaluate the performance of the proposed algorithm on H&E slides obtained from an SVM K-rasG12D lung cancer mouse model using precision/recall rates, F-score, Tanimoto coefficient, and area under the curve (AUC) of the receiver operator characteristic (ROC)
arXiv Detail & Related papers (2021-10-27T19:28:36Z) - DeepMMSA: A Novel Multimodal Deep Learning Method for Non-small Cell
Lung Cancer Survival Analysis [8.78724404464036]
We propose a multimodal deep learning method for non-small cell lung cancer (NSCLC) survival analysis, named DeepMMSA.
This method leverages CT images in combination with clinical data, enabling the abundant information hold within medical images to be associate with lung cancer survival information.
arXiv Detail & Related papers (2021-06-12T11:02:14Z) - Lymph Node Graph Neural Networks for Cancer Metastasis Prediction [0.342658286826597]
We present a novel graph-based approach to incorporate imaging characteristics of existing cancer spread to local lymph nodes.
We trained an edge-gated Graph Convolutional Network (Gated-GCN) to accurately predict the risk of distant metastasis.
arXiv Detail & Related papers (2021-06-03T09:28:14Z) - Variational Knowledge Distillation for Disease Classification in Chest
X-Rays [102.04931207504173]
We propose itvariational knowledge distillation (VKD), which is a new probabilistic inference framework for disease classification based on X-rays.
We demonstrate the effectiveness of our method on three public benchmark datasets with paired X-ray images and EHRs.
arXiv Detail & Related papers (2021-03-19T14:13:56Z) - Short Term Blood Glucose Prediction based on Continuous Glucose
Monitoring Data [53.01543207478818]
This study explores the use of Continuous Glucose Monitoring (CGM) data as input for digital decision support tools.
We investigate how Recurrent Neural Networks (RNNs) can be used for Short Term Blood Glucose (STBG) prediction.
arXiv Detail & Related papers (2020-02-06T16:39:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.