CDXFormer: Boosting Remote Sensing Change Detection with Extended Long Short-Term Memory
- URL: http://arxiv.org/abs/2411.07863v2
- Date: Sat, 21 Dec 2024 03:10:42 GMT
- Title: CDXFormer: Boosting Remote Sensing Change Detection with Extended Long Short-Term Memory
- Authors: Zhenkai Wu, Xiaowen Ma, Rongrong Lian, Kai Zheng, Wei Zhang,
- Abstract summary: In this paper, we propose CDXFormer, with a core component that is a powerful XLSTM-based feature enhancement layer.
We introduce a scale-specific Feature Enhancer layer, incorporating a Cross-Temporal Global Perceptron customized for semantic-accurate deep features.
We also propose a Cross-Scale Interactive Fusion module to progressively interact global change representations with spatial responses.
- Score: 7.926250735066206
- License:
- Abstract: In complex scenes and varied conditions, effectively integrating spatial-temporal context is crucial for accurately identifying changes. However, current RS-CD methods lack a balanced consideration of performance and efficiency. CNNs lack global context, Transformers are computationally expensive, and Mambas face CUDA dependence and local correlation loss. In this paper, we propose CDXFormer, with a core component that is a powerful XLSTM-based feature enhancement layer, integrating the advantages of linear computational complexity, global context perception, and strong interpret-ability. Specifically, we introduce a scale-specific Feature Enhancer layer, incorporating a Cross-Temporal Global Perceptron customized for semantic-accurate deep features, and a Cross-Temporal Spatial Refiner customized for detail-rich shallow features. Additionally, we propose a Cross-Scale Interactive Fusion module to progressively interact global change representations with spatial responses. Extensive experimental results demonstrate that CDXFormer achieves state-of-the-art performance across three benchmark datasets, offering a compelling balance between efficiency and accuracy. Code is available at https://github.com/xwmaxwma/rschange.
Related papers
- ContextFormer: Redefining Efficiency in Semantic Segmentation [46.06496660333768]
Convolutional methods, although capturing local dependencies well, struggle with long-range relationships.
Vision Transformers (ViTs) excel in global context capture but are hindered by high computational demands.
We propose ContextFormer, a hybrid framework leveraging the strengths of CNNs and ViTs in the bottleneck to balance efficiency, accuracy, and robustness for real-time semantic segmentation.
arXiv Detail & Related papers (2025-01-31T16:11:04Z) - Relating CNN-Transformer Fusion Network for Change Detection [23.025190360146635]
RCTNet introduces an early fusion backbone to exploit both spatial and temporal features.
Experiments demonstrate RCTNet's clear superiority over traditional RS image CD methods.
arXiv Detail & Related papers (2024-07-03T14:58:40Z) - ELGC-Net: Efficient Local-Global Context Aggregation for Remote Sensing Change Detection [65.59969454655996]
We propose an efficient change detection framework, ELGC-Net, which leverages rich contextual information to precisely estimate change regions.
Our proposed ELGC-Net sets a new state-of-the-art performance in remote sensing change detection benchmarks.
We also introduce ELGC-Net-LW, a lighter variant with significantly reduced computational complexity, suitable for resource-constrained settings.
arXiv Detail & Related papers (2024-03-26T17:46:25Z) - Rotated Multi-Scale Interaction Network for Referring Remote Sensing Image Segmentation [63.15257949821558]
Referring Remote Sensing Image (RRSIS) is a new challenge that combines computer vision and natural language processing.
Traditional Referring Image (RIS) approaches have been impeded by the complex spatial scales and orientations found in aerial imagery.
We introduce the Rotated Multi-Scale Interaction Network (RMSIN), an innovative approach designed for the unique demands of RRSIS.
arXiv Detail & Related papers (2023-12-19T08:14:14Z) - TransXNet: Learning Both Global and Local Dynamics with a Dual Dynamic
Token Mixer for Visual Recognition [71.6546914957701]
We propose a lightweight Dual Dynamic Token Mixer (D-Mixer) that aggregates global information and local details in an input-dependent way.
We use D-Mixer as the basic building block to design TransXNet, a novel hybrid CNN-Transformer vision backbone network.
In the ImageNet-1K image classification task, TransXNet-T surpasses Swin-T by 0.3% in top-1 accuracy while requiring less than half of the computational cost.
arXiv Detail & Related papers (2023-10-30T09:35:56Z) - WCCNet: Wavelet-integrated CNN with Crossmodal Rearranging Fusion for
Fast Multispectral Pedestrian Detection [16.43119521684829]
We propose a novel framework named WCCNet that is able to differentially extract rich features of different spectra with lower computational complexity.
Based on the well extracted features, we elaborately design the crossmodal rearranging fusion module (CMRF)
We conduct comprehensive evaluations on KAIST and FLIR benchmarks, in which WCCNet outperforms state-of-the-art methods with considerable computational efficiency and competitive accuracy.
arXiv Detail & Related papers (2023-08-02T09:35:21Z) - Cross-Spatial Pixel Integration and Cross-Stage Feature Fusion Based
Transformer Network for Remote Sensing Image Super-Resolution [13.894645293832044]
Transformer-based models have shown competitive performance in remote sensing image super-resolution (RSISR)
We propose a novel transformer architecture called Cross-Spatial Pixel Integration and Cross-Stage Feature Fusion Based Transformer Network (SPIFFNet) for RSISR.
Our proposed model effectively enhances global cognition and understanding of the entire image, facilitating efficient integration of features cross-stages.
arXiv Detail & Related papers (2023-07-06T13:19:06Z) - DepthFormer: Exploiting Long-Range Correlation and Local Information for
Accurate Monocular Depth Estimation [50.08080424613603]
Long-range correlation is essential for accurate monocular depth estimation.
We propose to leverage the Transformer to model this global context with an effective attention mechanism.
Our proposed model, termed DepthFormer, surpasses state-of-the-art monocular depth estimation methods with prominent margins.
arXiv Detail & Related papers (2022-03-27T05:03:56Z) - CSformer: Bridging Convolution and Transformer for Compressive Sensing [65.22377493627687]
This paper proposes a hybrid framework that integrates the advantages of leveraging detailed spatial information from CNN and the global context provided by transformer for enhanced representation learning.
The proposed approach is an end-to-end compressive image sensing method, composed of adaptive sampling and recovery.
The experimental results demonstrate the effectiveness of the dedicated transformer-based architecture for compressive sensing.
arXiv Detail & Related papers (2021-12-31T04:37:11Z) - XCiT: Cross-Covariance Image Transformers [73.33400159139708]
We propose a "transposed" version of self-attention that operates across feature channels rather than tokens.
The resulting cross-covariance attention (XCA) has linear complexity in the number of tokens, and allows efficient processing of high-resolution images.
arXiv Detail & Related papers (2021-06-17T17:33:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.