Improving quantum metrology protocols with programmable photonic circuits
- URL: http://arxiv.org/abs/2411.07929v1
- Date: Tue, 12 Nov 2024 17:02:38 GMT
- Title: Improving quantum metrology protocols with programmable photonic circuits
- Authors: A. Muñoz de las Heras, D. Porras, A. González-Tudela,
- Abstract summary: Photonic quantum metrology enables the measurement of physical parameters with precision surpassing classical limits.
generating states providing a large metrological advantage is hard because standard probabilistic methods suffer from low generation rates.
We introduce and compare different deterministic strategies based on continuous and programmable Jaynes-Cummings and Kerr-type interactions.
- Score: 0.0
- License:
- Abstract: Photonic quantum metrology enables the measurement of physical parameters with precision surpassing classical limits by using quantum states of light. However, generating states providing a large metrological advantage is hard because standard probabilistic methods suffer from low generation rates. Deterministic protocols using non-linear interactions offer a path to overcome this problem, but they are currently limited by the errors introduced during the interaction time. Thus, finding strategies to minimize the interaction time of these non-linearities is still a relevant question. In this work, we introduce and compare different deterministic strategies based on continuous and programmable Jaynes-Cummings and Kerr-type interactions, aiming to maximize the metrological advantage while minimizing the interaction time. We find that programmable interactions provide a larger metrological advantage than continuous operations at the expense of slightly larger interaction times. We show that while for Jaynes-Cummings non-linearities the interaction time grows with the photon number, for Kerr-type ones it decreases, favoring the scalability to big photon numbers. Finally, we also optimize different measurement strategies for the deterministically generated states based on photon-counting and homodyne detection.
Related papers
- Interplay between time and energy in bosonic noisy quantum metrology [0.0]
We show that there is a nontrivial interplay between the average energy and the time devoted to the estimation.
We show how the time employed in the estimation should be partitioned in order to achieve the best possible precision.
arXiv Detail & Related papers (2024-09-27T14:41:09Z) - Photonic quantum metrology with variational quantum optical
non-linearities [0.0]
Photonic quantum metrology harnesses quantum states of light to measure unknown parameters beyond classical precision limits.
Current protocols suffer from two severe limitations that preclude their scalability.
Here, we develop a deterministic protocol combining quantum optical non-linearities and variational quantum algorithms.
arXiv Detail & Related papers (2023-09-18T14:57:44Z) - Efficient characterization of blinking quantum emitters from scarce data
sets via machine learning [0.0]
Single photon emitters universally display fluorescence intermittency or photoblinking.
We present a multi-feature regression algorithm and a genetic algorithm that allow for the extraction of blinking on/off rates with >85% accuracy.
Our algorithms effectively extend the range of surveyable blinking systems and trapping dynamics to those that would otherwise be considered too short-lived to be investigated.
arXiv Detail & Related papers (2023-08-24T18:51:30Z) - Probing post-measurement entanglement without post-selection [0.0]
We study the problem of observing quantum collective phenomena emerging from large numbers of measurements.
An unconventional approach is to construct cross-correlations between experimental data and the results of simulations on classical computers.
arXiv Detail & Related papers (2023-05-31T17:59:59Z) - Retrieving space-dependent polarization transformations via near-optimal
quantum process tomography [55.41644538483948]
We investigate the application of genetic and machine learning approaches to tomographic problems.
We find that the neural network-based scheme provides a significant speed-up, that may be critical in applications requiring a characterization in real-time.
We expect these results to lay the groundwork for the optimization of tomographic approaches in more general quantum processes.
arXiv Detail & Related papers (2022-10-27T11:37:14Z) - Tight Cram\'{e}r-Rao type bounds for multiparameter quantum metrology
through conic programming [61.98670278625053]
It is paramount to have practical measurement strategies that can estimate incompatible parameters with best precisions possible.
Here, we give a concrete way to find uncorrelated measurement strategies with optimal precisions.
We show numerically that there is a strict gap between the previous efficiently computable bounds and the ultimate precision bound.
arXiv Detail & Related papers (2022-09-12T13:06:48Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Hybridized Methods for Quantum Simulation in the Interaction Picture [69.02115180674885]
We provide a framework that allows different simulation methods to be hybridized and thereby improve performance for interaction picture simulations.
Physical applications of these hybridized methods yield a gate complexity scaling as $log2 Lambda$ in the electric cutoff.
For the general problem of Hamiltonian simulation subject to dynamical constraints, these methods yield a query complexity independent of the penalty parameter $lambda$ used to impose an energy cost.
arXiv Detail & Related papers (2021-09-07T20:01:22Z) - Enhanced nonlinear quantum metrology with weakly coupled solitons and
particle losses [58.720142291102135]
We offer an interferometric procedure for phase parameters estimation at the Heisenberg (up to 1/N) and super-Heisenberg scaling levels.
The heart of our setup is the novel soliton Josephson Junction (SJJ) system providing the formation of the quantum probe.
We illustrate that such states are close to the optimal ones even with moderate losses.
arXiv Detail & Related papers (2021-08-07T09:29:23Z) - Designing Kerr Interactions for Quantum Information Processing via
Counterrotating Terms of Asymmetric Josephson-Junction Loops [68.8204255655161]
static cavity nonlinearities typically limit the performance of bosonic quantum error-correcting codes.
Treating the nonlinearity as a perturbation, we derive effective Hamiltonians using the Schrieffer-Wolff transformation.
Results show that a cubic interaction allows to increase the effective rates of both linear and nonlinear operations.
arXiv Detail & Related papers (2021-07-14T15:11:05Z) - Distinguishability and "which pathway" information in multidimensional
interferometric spectroscopy with a single entangled photon-pair [0.0]
Photon exchange-phase and degree of distinguishability have not been widely utilized in quantum-enhanced applications.
We show that even at low degree entanglement, when a two-photon wave-function is coupled to matter, it is encoded with a reliable "which pathway?" information.
We find that quantum-light interferometry facilitates utterly different set of time-delay variables, which are unbound by uncertainty to the inverse bandwidth of the wave-packet.
arXiv Detail & Related papers (2021-07-12T07:19:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.