On the Role of Speech Data in Reducing Toxicity Detection Bias
- URL: http://arxiv.org/abs/2411.08135v1
- Date: Tue, 12 Nov 2024 19:26:43 GMT
- Title: On the Role of Speech Data in Reducing Toxicity Detection Bias
- Authors: Samuel J. Bell, Mariano Coria Meglioli, Megan Richards, Eduardo Sánchez, Christophe Ropers, Skyler Wang, Adina Williams, Levent Sagun, Marta R. Costa-jussà ,
- Abstract summary: We produce a set of high-quality group annotations for the multilingual MuTox dataset.
We then leverage these annotations to systematically compare speech- and text-based toxicity classifiers.
Our findings indicate that access to speech data during inference supports reduced bias against group mentions.
- Score: 22.44133159647888
- License:
- Abstract: Text toxicity detection systems exhibit significant biases, producing disproportionate rates of false positives on samples mentioning demographic groups. But what about toxicity detection in speech? To investigate the extent to which text-based biases are mitigated by speech-based systems, we produce a set of high-quality group annotations for the multilingual MuTox dataset, and then leverage these annotations to systematically compare speech- and text-based toxicity classifiers. Our findings indicate that access to speech data during inference supports reduced bias against group mentions, particularly for ambiguous and disagreement-inducing samples. Our results also suggest that improving classifiers, rather than transcription pipelines, is more helpful for reducing group bias. We publicly release our annotations and provide recommendations for future toxicity dataset construction.
Related papers
- Detecting Unintended Social Bias in Toxic Language Datasets [32.724030288421474]
This paper introduces a new dataset ToxicBias curated from the existing dataset of Kaggle competition named "Jigsaw Unintended Bias in Toxicity Classification"
The dataset contains instances annotated for five different bias categories, viz., gender, race/ethnicity, religion, political, and LGBTQ.
We train transformer-based models using our curated datasets and report baseline performance for bias identification, target generation, and bias implications.
arXiv Detail & Related papers (2022-10-21T06:50:12Z) - ToxiGen: A Large-Scale Machine-Generated Dataset for Adversarial and
Implicit Hate Speech Detection [33.715318646717385]
ToxiGen is a large-scale dataset of 274k toxic and benign statements about 13 minority groups.
Controlling machine generation in this way allows ToxiGen to cover implicitly toxic text at a larger scale.
We find that 94.5% of toxic examples are labeled as hate speech by human annotators.
arXiv Detail & Related papers (2022-03-17T17:57:56Z) - Speaker Embedding-aware Neural Diarization for Flexible Number of
Speakers with Textual Information [55.75018546938499]
We propose the speaker embedding-aware neural diarization (SEND) method, which predicts the power set encoded labels.
Our method achieves lower diarization error rate than the target-speaker voice activity detection.
arXiv Detail & Related papers (2021-11-28T12:51:04Z) - Toxicity Detection can be Sensitive to the Conversational Context [64.28043776806213]
We construct and publicly release a dataset of 10,000 posts with two kinds of toxicity labels.
We introduce a new task, context sensitivity estimation, which aims to identify posts whose perceived toxicity changes if the context is also considered.
arXiv Detail & Related papers (2021-11-19T13:57:26Z) - Mitigating Biases in Toxic Language Detection through Invariant
Rationalization [70.36701068616367]
biases toward some attributes, including gender, race, and dialect, exist in most training datasets for toxicity detection.
We propose to use invariant rationalization (InvRat), a game-theoretic framework consisting of a rationale generator and a predictor, to rule out the spurious correlation of certain syntactic patterns.
Our method yields lower false positive rate in both lexical and dialectal attributes than previous debiasing methods.
arXiv Detail & Related papers (2021-06-14T08:49:52Z) - A Token-level Reference-free Hallucination Detection Benchmark for
Free-form Text Generation [50.55448707570669]
We propose a novel token-level, reference-free hallucination detection task and an associated annotated dataset named HaDes.
To create this dataset, we first perturb a large number of text segments extracted from English language Wikipedia, and then verify these with crowd-sourced annotations.
arXiv Detail & Related papers (2021-04-18T04:09:48Z) - Cross-geographic Bias Detection in Toxicity Modeling [9.128264779870538]
We introduce a weakly supervised method to robustly detect lexical biases in broader geocultural contexts.
We demonstrate that our method identifies salient groups of errors, and, in a follow up, demonstrate that these groupings reflect human judgments of offensive and inoffensive language in those geographic contexts.
arXiv Detail & Related papers (2021-04-14T17:32:05Z) - Challenges in Automated Debiasing for Toxic Language Detection [81.04406231100323]
Biased associations have been a challenge in the development of classifiers for detecting toxic language.
We investigate recently introduced debiasing methods for text classification datasets and models, as applied to toxic language detection.
Our focus is on lexical (e.g., swear words, slurs, identity mentions) and dialectal markers (specifically African American English)
arXiv Detail & Related papers (2021-01-29T22:03:17Z) - Detecting Hallucinated Content in Conditional Neural Sequence Generation [165.68948078624499]
We propose a task to predict whether each token in the output sequence is hallucinated (not contained in the input)
We also introduce a method for learning to detect hallucinations using pretrained language models fine tuned on synthetic data.
arXiv Detail & Related papers (2020-11-05T00:18:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.