EAPCR: A Universal Feature Extractor for Scientific Data without Explicit Feature Relation Patterns
- URL: http://arxiv.org/abs/2411.08164v1
- Date: Tue, 12 Nov 2024 20:15:32 GMT
- Title: EAPCR: A Universal Feature Extractor for Scientific Data without Explicit Feature Relation Patterns
- Authors: Zhuohang Yu, Ling An, Yansong Li, Yu Wu, Zeyu Dong, Zhangdi Liu, Le Gao, Zhenyu Zhang, Chichun Zhou,
- Abstract summary: We introduce EAPCR, a universal feature extractor designed for data without explicit Feature Relation Patterns (FRPs)
Tested across various scientific tasks, EAPCR consistently outperforms traditional methods and bridges the gap where deep learning models fall short.
- Score: 11.699722328870955
- License:
- Abstract: Conventional methods, including Decision Tree (DT)-based methods, have been effective in scientific tasks, such as non-image medical diagnostics, system anomaly detection, and inorganic catalysis efficiency prediction. However, most deep-learning techniques have struggled to surpass or even match this level of success as traditional machine-learning methods. The primary reason is that these applications involve multi-source, heterogeneous data where features lack explicit relationships. This contrasts with image data, where pixels exhibit spatial relationships; textual data, where words have sequential dependencies; and graph data, where nodes are connected through established associations. The absence of explicit Feature Relation Patterns (FRPs) presents a significant challenge for deep learning techniques in scientific applications that are not image, text, and graph-based. In this paper, we introduce EAPCR, a universal feature extractor designed for data without explicit FRPs. Tested across various scientific tasks, EAPCR consistently outperforms traditional methods and bridges the gap where deep learning models fall short. To further demonstrate its robustness, we synthesize a dataset without explicit FRPs. While Kolmogorov-Arnold Network (KAN) and feature extractors like Convolutional Neural Networks (CNNs), Graph Convolutional Networks (GCNs), and Transformers struggle, EAPCR excels, demonstrating its robustness and superior performance in scientific tasks without FRPs.
Related papers
- DFA-GNN: Forward Learning of Graph Neural Networks by Direct Feedback Alignment [57.62885438406724]
Graph neural networks are recognized for their strong performance across various applications.
BP has limitations that challenge its biological plausibility and affect the efficiency, scalability and parallelism of training neural networks for graph-based tasks.
We propose DFA-GNN, a novel forward learning framework tailored for GNNs with a case study of semi-supervised learning.
arXiv Detail & Related papers (2024-06-04T07:24:51Z) - Advancing Generalizable Remote Physiological Measurement through the
Integration of Explicit and Implicit Prior Knowledge [30.31568804817144]
Remote photoplethysmography (r) is a promising technology that captures physiological signals from face videos.
Most existing methods have overlooked the prior knowledge of r, resulting in poor generalization ability.
We propose a novel framework that simultaneously utilizes explicit and implicit prior knowledge methods in the r task.
arXiv Detail & Related papers (2024-03-11T17:33:25Z) - A Discrepancy Aware Framework for Robust Anomaly Detection [51.710249807397695]
We present a Discrepancy Aware Framework (DAF), which demonstrates robust performance consistently with simple and cheap strategies.
Our method leverages an appearance-agnostic cue to guide the decoder in identifying defects, thereby alleviating its reliance on synthetic appearance.
Under the simple synthesis strategies, it outperforms existing methods by a large margin. Furthermore, it also achieves the state-of-the-art localization performance.
arXiv Detail & Related papers (2023-10-11T15:21:40Z) - Homological Convolutional Neural Networks [4.615338063719135]
We propose a novel deep learning architecture that exploits the data structural organization through topologically constrained network representations.
We test our model on 18 benchmark datasets against 5 classic machine learning and 3 deep learning models.
arXiv Detail & Related papers (2023-08-26T08:48:51Z) - FFEINR: Flow Feature-Enhanced Implicit Neural Representation for
Spatio-temporal Super-Resolution [4.577685231084759]
This paper proposes a Feature-Enhanced Neural Implicit Representation (FFEINR) for super-resolution of flow field data.
It can take full advantage of the implicit neural representation in terms of model structure and sampling resolution.
The training process of FFEINR is facilitated by introducing feature enhancements for the input layer.
arXiv Detail & Related papers (2023-08-24T02:28:18Z) - Source-Free Collaborative Domain Adaptation via Multi-Perspective
Feature Enrichment for Functional MRI Analysis [55.03872260158717]
Resting-state MRI functional (rs-fMRI) is increasingly employed in multi-site research to aid neurological disorder analysis.
Many methods have been proposed to reduce fMRI heterogeneity between source and target domains.
But acquiring source data is challenging due to concerns and/or data storage burdens in multi-site studies.
We design a source-free collaborative domain adaptation framework for fMRI analysis, where only a pretrained source model and unlabeled target data are accessible.
arXiv Detail & Related papers (2023-08-24T01:30:18Z) - Energy-based Out-of-Distribution Detection for Graph Neural Networks [76.0242218180483]
We propose a simple, powerful and efficient OOD detection model for GNN-based learning on graphs, which we call GNNSafe.
GNNSafe achieves up to $17.0%$ AUROC improvement over state-of-the-arts and it could serve as simple yet strong baselines in such an under-developed area.
arXiv Detail & Related papers (2023-02-06T16:38:43Z) - Inducing Gaussian Process Networks [80.40892394020797]
We propose inducing Gaussian process networks (IGN), a simple framework for simultaneously learning the feature space as well as the inducing points.
The inducing points, in particular, are learned directly in the feature space, enabling a seamless representation of complex structured domains.
We report on experimental results for real-world data sets showing that IGNs provide significant advances over state-of-the-art methods.
arXiv Detail & Related papers (2022-04-21T05:27:09Z) - Tackling Oversmoothing of GNNs with Contrastive Learning [35.88575306925201]
Graph neural networks (GNNs) integrate the comprehensive relation of graph data and representation learning capability.
Oversmoothing makes the final representations of nodes indiscriminative, thus deteriorating the node classification and link prediction performance.
We propose the Topology-guided Graph Contrastive Layer, named TGCL, which is the first de-oversmoothing method maintaining all three mentioned metrics.
arXiv Detail & Related papers (2021-10-26T15:56:16Z) - Spatio-Temporal Inception Graph Convolutional Networks for
Skeleton-Based Action Recognition [126.51241919472356]
We design a simple and highly modularized graph convolutional network architecture for skeleton-based action recognition.
Our network is constructed by repeating a building block that aggregates multi-granularity information from both the spatial and temporal paths.
arXiv Detail & Related papers (2020-11-26T14:43:04Z) - Unsupervised Multi-Modal Representation Learning for Affective Computing
with Multi-Corpus Wearable Data [16.457778420360537]
We propose an unsupervised framework to reduce the reliance on human supervision.
The proposed framework utilizes two stacked convolutional autoencoders to learn latent representations from wearable electrocardiogram (ECG) and electrodermal activity (EDA) signals.
Our method outperforms current state-of-the-art results that have performed arousal detection on the same datasets.
arXiv Detail & Related papers (2020-08-24T22:01:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.