Enhanced Classroom Dialogue Sequences Analysis with a Hybrid AI Agent: Merging Expert Rule-Base with Large Language Models
- URL: http://arxiv.org/abs/2411.08418v1
- Date: Wed, 13 Nov 2024 08:13:41 GMT
- Title: Enhanced Classroom Dialogue Sequences Analysis with a Hybrid AI Agent: Merging Expert Rule-Base with Large Language Models
- Authors: Yun Long, Yu Zhang,
- Abstract summary: This study develops a comprehensive rule base of dialogue sequences and an Artificial Intelligence (AI) agent.
The agent applies expert knowledge while adapting to the complexities of natural language, enabling accurate and flexible categorisation of classroom dialogue sequences.
- Score: 7.439914834067705
- License:
- Abstract: Classroom dialogue plays a crucial role in fostering student engagement and deeper learning. However, analysing dialogue sequences has traditionally relied on either theoretical frameworks or empirical descriptions of practice, with limited integration between the two. This study addresses this gap by developing a comprehensive rule base of dialogue sequences and an Artificial Intelligence (AI) agent that combines expert-informed rule-based systems with a large language model (LLM). The agent applies expert knowledge while adapting to the complexities of natural language, enabling accurate and flexible categorisation of classroom dialogue sequences. By synthesising findings from over 30 studies, we established a comprehensive framework for dialogue analysis. The agent was validated against human expert coding, achieving high levels of precision and reliability. The results demonstrate that the agent provides theory-grounded and adaptive functions, tremendously enhancing the efficiency and scalability of classroom dialogue analysis, offering significant potential in improving classroom teaching practices and supporting teacher professional development.
Related papers
- Exploring Knowledge Tracing in Tutor-Student Dialogues [53.52699766206808]
We present a first attempt at performing knowledge tracing (KT) in tutor-student dialogues.
We propose methods to identify the knowledge components/skills involved in each dialogue turn.
We then apply a range of KT methods on the resulting labeled data to track student knowledge levels over an entire dialogue.
arXiv Detail & Related papers (2024-09-24T22:31:39Z) - Self-Explanation Prompting Improves Dialogue Understanding in Large
Language Models [52.24756457516834]
We propose a novel "Self-Explanation" prompting strategy to enhance the comprehension abilities of Large Language Models (LLMs)
This task-agnostic approach requires the model to analyze each dialogue utterance before task execution, thereby improving performance across various dialogue-centric tasks.
Experimental results from six benchmark datasets confirm that our method consistently outperforms other zero-shot prompts and matches or exceeds the efficacy of few-shot prompts.
arXiv Detail & Related papers (2023-09-22T15:41:34Z) - Revisiting Conversation Discourse for Dialogue Disentanglement [88.3386821205896]
We propose enhancing dialogue disentanglement by taking full advantage of the dialogue discourse characteristics.
We develop a structure-aware framework to integrate the rich structural features for better modeling the conversational semantic context.
Our work has great potential to facilitate broader multi-party multi-thread dialogue applications.
arXiv Detail & Related papers (2023-06-06T19:17:47Z) - Enhancing Semantic Understanding with Self-supervised Methods for
Abstractive Dialogue Summarization [4.226093500082746]
We introduce self-supervised methods to compensate shortcomings to train a dialogue summarization model.
Our principle is to detect incoherent information flows using pretext dialogue text to enhance BERT's ability to contextualize the dialogue text representations.
arXiv Detail & Related papers (2022-09-01T07:51:46Z) - Improving mathematical questioning in teacher training [1.794107419334178]
High-fidelity, AI-based simulated classroom systems enable teachers to rehearse effective teaching strategies.
This paper builds a text-based interactive conversational agent to help teachers practice mathematical questioning skills.
arXiv Detail & Related papers (2021-12-02T05:33:03Z) - Dialogue Inspectional Summarization with Factual Inconsistency Awareness [34.97845384948336]
We investigate the factual inconsistency problem for Dialogue Inspectional Summarization (DIS) under non-pretraining and pretraining settings.
An innovative end-to-end dialogue summary generation framework is proposed with two auxiliary tasks.
Comprehensive experiments demonstrate that the proposed model can generate a more readable summary with accurate coverage of factual aspects.
arXiv Detail & Related papers (2021-11-05T06:26:22Z) - Advances in Multi-turn Dialogue Comprehension: A Survey [51.215629336320305]
Training machines to understand natural language and interact with humans is an elusive and essential task of artificial intelligence.
This paper reviews the previous methods from the technical perspective of dialogue modeling for the dialogue comprehension task.
In addition, we categorize dialogue-related pre-training techniques which are employed to enhance PrLMs in dialogue scenarios.
arXiv Detail & Related papers (2021-10-11T03:52:37Z) - Structural Pre-training for Dialogue Comprehension [51.215629336320305]
We present SPIDER, Structural Pre-traIned DialoguE Reader, to capture dialogue exclusive features.
To simulate the dialogue-like features, we propose two training objectives in addition to the original LM objectives.
Experimental results on widely used dialogue benchmarks verify the effectiveness of the newly introduced self-supervised tasks.
arXiv Detail & Related papers (2021-05-23T15:16:54Z) - Advances in Multi-turn Dialogue Comprehension: A Survey [51.215629336320305]
We review the previous methods from the perspective of dialogue modeling.
We discuss three typical patterns of dialogue modeling that are widely-used in dialogue comprehension tasks.
arXiv Detail & Related papers (2021-03-04T15:50:17Z) - An Improved Approach of Intention Discovery with Machine Learning for
POMDP-based Dialogue Management [0.0]
Embodied Conversational Agent (ECA) works as the front end of software applications to interact with users through verbal/nonverbal expressions.
This thesis highlights the main topics related to the construction of ECA, including different approaches of dialogue management.
It proposes a cohesive framework to integrate emotion-based facial animation with improved intention discovery.
arXiv Detail & Related papers (2020-09-20T05:28:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.