Quantum Time Travel Revisited: Noncommutative Möbius Transformations and Time Loops
- URL: http://arxiv.org/abs/2411.08543v3
- Date: Fri, 22 Nov 2024 21:50:30 GMT
- Title: Quantum Time Travel Revisited: Noncommutative Möbius Transformations and Time Loops
- Authors: J. E. Gough,
- Abstract summary: We extend the theory of quantum time loops introduced by Greenberger and Svozil to the general situation where the time traveling system has multi-dimensional underlying Hilbert space.
The main mathematical tool which emerges is the noncommutative Mobius Transformation.
We analyze some Grandfather paradoxes in the new setting.
- Score: 0.0
- License:
- Abstract: We extend the theory of quantum time loops introduced by Greenberger and Svozil [1] from the scalar situation (where paths have just an associated complex amplitude) to the general situation where the time traveling system has multi-dimensional underlying Hilbert space. The main mathematical tool which emerges is the noncommutative Mobius Transformation and this affords a formalism similar to the modular structure well known to feedback control problems. The self-consistency issues that plague other approaches do not arise in this approach as we do not consider completely closed time loops. We argue that a sum-over-all-paths approach may be carried out in the scalar case, but quickly becomes unwieldy in the general case. It is natural to replace the beamsplitters of [1] with more general components having their own quantum structure, in which case the theory starts to resemble the quantum feedback networks theory for open quantum optical models and indeed we exploit this to look at more realistic physical models of time loops. We analyze some Grandfather paradoxes in the new setting.
Related papers
- Quantum operations with the time axis in a superposed direction [0.0]
We introduce an expanded concept of matrix transposition, that takes into account general bipartite unitary transformations of a quantum operation's future and past Hilbert spaces.
This framework may have applications in approaches that treat time and space equally like quantum gravity.
arXiv Detail & Related papers (2023-06-05T10:20:59Z) - Quantum Speed Limit for Change of Basis [55.500409696028626]
We extend the notion of quantum speed limits to collections of quantum states.
For two-qubit systems, we show that the fastest transformation implements two Hadamards and a swap of the qubits simultaneously.
For qutrit systems the evolution time depends on the particular type of the unbiased basis.
arXiv Detail & Related papers (2022-12-23T14:10:13Z) - Wave Functional of the Universe and Time [62.997667081978825]
A version of the quantum theory of gravity based on the concept of the wave functional of the universe is proposed.
The history of the evolution of the universe is described in terms of coordinate time together with arbitrary lapse and shift functions.
arXiv Detail & Related papers (2021-10-18T09:41:59Z) - Circuit Complexity in Topological Quantum Field Theory [0.0]
Quantum circuit complexity has played a central role in advances in holography and many-body physics.
In a departure from standard treatments, we aim to quantify the complexity of the Euclidean path integral.
We argue that the pants decomposition provides a natural notion of circuit complexity within the category of 2-dimensional bordisms.
We use it to formulate the circuit complexity of states and operators in 2-dimensional topological quantum field theory.
arXiv Detail & Related papers (2021-08-30T18:00:00Z) - Time and Evolution in Quantum and Classical Cosmology [68.8204255655161]
We show that it is neither necessary nor sufficient for the Poisson bracket between the time variable and the super-Hamiltonian to be equal to unity in all of the phase space.
We also discuss the question of switching between different internal times as well as the Montevideo interpretation of quantum theory.
arXiv Detail & Related papers (2021-07-02T09:17:55Z) - Noncausal Page-Wootters circuits [0.0]
Page-Wootters formalism associates to time a Hilbert space structure similar to spatial position.
By explicitly introducing a quantum clock, it allows to describe time-evolution of systems via correlations between this clock and said systems encoded in history states.
We describe how to extract process matrices from scenarios involving such agents with quantum clocks, and analyze their properties.
arXiv Detail & Related papers (2021-05-05T20:02:09Z) - The Time-Evolution of States in Quantum Mechanics [77.34726150561087]
It is argued that the Schr"odinger equation does not yield a correct description of the quantum-mechanical time evolution of states of isolated (open) systems featuring events.
A precise general law for the time evolution of states replacing the Schr"odinger equation is formulated within the so-called ETH-Approach to Quantum Mechanics.
arXiv Detail & Related papers (2021-01-04T16:09:10Z) - Real-Time Motion of Open Quantum Systems: Structure of Entanglement,
Renormalization Group, and Trajectories [0.0]
We provide a complete description of the lifecycle of entanglement during the real-time motion of open quantum systems.
The entanglement can be seen constructively as a Lego: its bricks are the modes of the environment.
arXiv Detail & Related papers (2020-12-07T21:12:15Z) - There is only one time [110.83289076967895]
We draw a picture of physical systems that allows us to recognize what is this thing called "time"
We derive the Schr"odinger equation in the first case, and the Hamilton equations of motion in the second one.
arXiv Detail & Related papers (2020-06-22T09:54:46Z) - Time-dependence in non-Hermitian quantum systems [0.0]
We present a coherent and consistent framework for explicit time-dependence in non-Hermitian quantum mechanics.
We create an elegant framework for Darboux and Darboux/Crum for time-dependent non-Hermitian Hamiltonians.
arXiv Detail & Related papers (2020-02-05T20:19:03Z) - Projection evolution and quantum spacetime [68.8204255655161]
We discuss the problem of time in quantum mechanics.
An idea of construction of a quantum spacetime as a special set of the allowed states is presented.
An example of a structureless quantum Minkowski-like spacetime is also considered.
arXiv Detail & Related papers (2019-10-24T14:54:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.