LogLLM: Log-based Anomaly Detection Using Large Language Models
- URL: http://arxiv.org/abs/2411.08561v1
- Date: Wed, 13 Nov 2024 12:18:00 GMT
- Title: LogLLM: Log-based Anomaly Detection Using Large Language Models
- Authors: Wei Guan, Jian Cao, Shiyou Qian, Jianqi Gao,
- Abstract summary: We propose LogLLM, a log-based anomaly detection framework that leverages large language models (LLMs)
LogLLM employs BERT for extracting semantic vectors from log messages, while utilizing Llama, a transformer decoder-based model, for classifying log sequences.
Our framework is trained through a novel three-stage procedure designed to enhance performance and adaptability.
- Score: 8.03646578793411
- License:
- Abstract: Software systems often record important runtime information in logs to help with troubleshooting. Log-based anomaly detection has become a key research area that aims to identify system issues through log data, ultimately enhancing the reliability of software systems. Traditional deep learning methods often struggle to capture the semantic information embedded in log data, which is typically organized in natural language. In this paper, we propose LogLLM, a log-based anomaly detection framework that leverages large language models (LLMs). LogLLM employs BERT for extracting semantic vectors from log messages, while utilizing Llama, a transformer decoder-based model, for classifying log sequences. Additionally, we introduce a projector to align the vector representation spaces of BERT and Llama, ensuring a cohesive understanding of log semantics. Unlike conventional methods that require log parsers to extract templates, LogLLM preprocesses log messages with regular expressions, streamlining the entire process. Our framework is trained through a novel three-stage procedure designed to enhance performance and adaptability. Experimental results across four public datasets demonstrate that LogLLM outperforms state-of-the-art methods. Even when handling unstable logs, it effectively captures the semantic meaning of log messages and detects anomalies accurately.
Related papers
- HELP: Hierarchical Embeddings-based Log Parsing [0.25112747242081457]
Logs are a first-hand source of information for software maintenance and failure diagnosis.
Log parsing is a prerequisite for automated log analysis tasks such as anomaly detection, troubleshooting, and root cause analysis.
Existing online parsing algorithms are susceptible to log drift, where slight log changes create false positives that drown out real anomalies.
arXiv Detail & Related papers (2024-08-15T17:54:31Z) - Stronger, Cheaper and Demonstration-Free Log Parsing with LLMs [18.240096266464544]
We propose LogBatcher, a cost-effective LLM-based log that requires no training process or labeled data.
We have conducted experiments on 16 public log datasets and the results show that LogBatcher is effective for log parsing.
arXiv Detail & Related papers (2024-06-10T10:39:28Z) - LogELECTRA: Self-supervised Anomaly Detection for Unstructured Logs [0.0]
The goal of log-based anomaly detection is to automatically detect system anomalies by analyzing the large number of logs generated in a short period of time.
Previous studies have used a log to extract templates from unstructured log data and detect anomalies on the basis of patterns of the template occurrences.
We propose LogELECTRA, a new log anomaly detection model that analyzes a single line of log messages more deeply on the basis of self-supervised anomaly detection.
arXiv Detail & Related papers (2024-02-16T01:47:02Z) - LogFormer: A Pre-train and Tuning Pipeline for Log Anomaly Detection [73.69399219776315]
We propose a unified Transformer-based framework for Log anomaly detection (LogFormer) to improve the generalization ability across different domains.
Specifically, our model is first pre-trained on the source domain to obtain shared semantic knowledge of log data.
Then, we transfer such knowledge to the target domain via shared parameters.
arXiv Detail & Related papers (2024-01-09T12:55:21Z) - RAPID: Training-free Retrieval-based Log Anomaly Detection with PLM
considering Token-level information [7.861095039299132]
The need for log anomaly detection is growing, especially in real-world applications.
Traditional deep learning-based anomaly detection models require dataset-specific training, leading to corresponding delays.
We introduce RAPID, a model that capitalizes on the inherent features of log data to enable anomaly detection without training delays.
arXiv Detail & Related papers (2023-11-09T06:11:44Z) - GLAD: Content-aware Dynamic Graphs For Log Anomaly Detection [49.9884374409624]
GLAD is a Graph-based Log Anomaly Detection framework designed to detect anomalies in system logs.
We introduce GLAD, a Graph-based Log Anomaly Detection framework designed to detect anomalies in system logs.
arXiv Detail & Related papers (2023-09-12T04:21:30Z) - LAnoBERT: System Log Anomaly Detection based on BERT Masked Language
Model [12.00171674362062]
The aim of system log anomaly detection is to promptly identify anomalies while minimizing human intervention.
Previous studies performed anomaly detection through algorithms after converting various forms of log data into a standardized template.
In this study, we propose LAnoBERT, exhibiting excellent natural language processing performance.
arXiv Detail & Related papers (2021-11-18T07:46:35Z) - LogLAB: Attention-Based Labeling of Log Data Anomalies via Weak
Supervision [63.08516384181491]
We present LogLAB, a novel modeling approach for automated labeling of log messages without requiring manual work by experts.
Our method relies on estimated failure time windows provided by monitoring systems to produce precise labeled datasets in retrospect.
Our evaluation shows that LogLAB consistently outperforms nine benchmark approaches across three different datasets and maintains an F1-score of more than 0.98 even at large failure time windows.
arXiv Detail & Related papers (2021-11-02T15:16:08Z) - Robust and Transferable Anomaly Detection in Log Data using Pre-Trained
Language Models [59.04636530383049]
Anomalies or failures in large computer systems, such as the cloud, have an impact on a large number of users.
We propose a framework for anomaly detection in log data, as a major troubleshooting source of system information.
arXiv Detail & Related papers (2021-02-23T09:17:05Z) - Self-Attentive Classification-Based Anomaly Detection in Unstructured
Logs [59.04636530383049]
We propose Logsy, a classification-based method to learn log representations.
We show an average improvement of 0.25 in the F1 score, compared to the previous methods.
arXiv Detail & Related papers (2020-08-21T07:26:55Z) - Self-Supervised Log Parsing [59.04636530383049]
Large-scale software systems generate massive volumes of semi-structured log records.
Existing approaches rely on log-specifics or manual rule extraction.
We propose NuLog that utilizes a self-supervised learning model and formulates the parsing task as masked language modeling.
arXiv Detail & Related papers (2020-03-17T19:25:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.