MVKTrans: Multi-View Knowledge Transfer for Robust Multiomics Classification
- URL: http://arxiv.org/abs/2411.08703v1
- Date: Wed, 13 Nov 2024 15:45:46 GMT
- Title: MVKTrans: Multi-View Knowledge Transfer for Robust Multiomics Classification
- Authors: Shan Cong, Zhiling Sang, Hongwei Liu, Haoran Luo, Xin Wang, Hong Liang, Jie Hao, Xiaohui Yao,
- Abstract summary: We propose the multi-view knowledge transfer learning framework, which transfers intra- and inter-omics knowledge in an adaptive manner.
Specifically, we design a graph contrastive module that is trained on unlabeled data to effectively learn and transfer the underlying intra-omics patterns to the supervised task.
In light of the varying discriminative capacities of modalities across different diseases and/or samples, we introduce an adaptive and bi-directional cross-omics distillation module.
- Score: 14.533025681231294
- License:
- Abstract: The distinct characteristics of multiomics data, including complex interactions within and across biological layers and disease heterogeneity (e.g., heterogeneity in etiology and clinical symptoms), drive us to develop novel designs to address unique challenges in multiomics prediction. In this paper, we propose the multi-view knowledge transfer learning (MVKTrans) framework, which transfers intra- and inter-omics knowledge in an adaptive manner by reviewing data heterogeneity and suppressing bias transfer, thereby enhancing classification performance. Specifically, we design a graph contrastive module that is trained on unlabeled data to effectively learn and transfer the underlying intra-omics patterns to the supervised task. This unsupervised pretraining promotes learning general and unbiased representations for each modality, regardless of the downstream tasks. In light of the varying discriminative capacities of modalities across different diseases and/or samples, we introduce an adaptive and bi-directional cross-omics distillation module. This module automatically identifies richer modalities and facilitates dynamic knowledge transfer from more informative to less informative omics, thereby enabling a more robust and generalized integration. Extensive experiments on four real biomedical datasets demonstrate the superior performance and robustness of MVKTrans compared to the state-of-the-art. Code and data are available at https://github.com/Yaolab-fantastic/MVKTrans.
Related papers
- UNICORN: A Deep Learning Model for Integrating Multi-Stain Data in Histopathology [2.9389205138207277]
UNICORN is a multi-modal transformer capable of processing multi-stain histopathology for atherosclerosis severity class prediction.
The architecture comprises a two-stage, end-to-end trainable model with specialized modules utilizing transformer self-attention blocks.
UNICORN achieved a classification accuracy of 0.67, outperforming other state-of-the-art models.
arXiv Detail & Related papers (2024-09-26T12:13:52Z) - FORESEE: Multimodal and Multi-view Representation Learning for Robust Prediction of Cancer Survival [3.4686401890974197]
We propose a new end-to-end framework, FORESEE, for robustly predicting patient survival by mining multimodal information.
Cross-fusion transformer effectively utilizes features at the cellular level, tissue level, and tumor heterogeneity level to correlate prognosis.
The hybrid attention encoder (HAE) uses the denoising contextual attention module to obtain the contextual relationship features.
We also propose an asymmetrically masked triplet masked autoencoder to reconstruct lost information within modalities.
arXiv Detail & Related papers (2024-05-13T12:39:08Z) - CLCLSA: Cross-omics Linked embedding with Contrastive Learning and Self
Attention for multi-omics integration with incomplete multi-omics data [47.2764293508916]
Integration of heterogeneous and high-dimensional multi-omics data is becoming increasingly important in understanding genetic data.
One obstacle faced when performing multi-omics data integration is the existence of unpaired multi-omics data due to instrument sensitivity and cost.
We propose a deep learning method for multi-omics integration with incomplete data by Cross-omics Linked unified embedding with Contrastive Learning and Self Attention.
arXiv Detail & Related papers (2023-04-12T00:22:18Z) - Transfer Learning on Heterogeneous Feature Spaces for Treatment Effects
Estimation [103.55894890759376]
This paper introduces several building blocks that use representation learning to handle the heterogeneous feature spaces.
We show how these building blocks can be used to recover transfer learning equivalents of the standard CATE learners.
arXiv Detail & Related papers (2022-10-08T16:41:02Z) - Differentiable Agent-based Epidemiology [71.81552021144589]
We introduce GradABM: a scalable, differentiable design for agent-based modeling that is amenable to gradient-based learning with automatic differentiation.
GradABM can quickly simulate million-size populations in few seconds on commodity hardware, integrate with deep neural networks and ingest heterogeneous data sources.
arXiv Detail & Related papers (2022-07-20T07:32:02Z) - 2021 BEETL Competition: Advancing Transfer Learning for Subject
Independence & Heterogenous EEG Data Sets [89.84774119537087]
We design two transfer learning challenges around diagnostics and Brain-Computer-Interfacing (BCI)
Task 1 is centred on medical diagnostics, addressing automatic sleep stage annotation across subjects.
Task 2 is centred on Brain-Computer Interfacing (BCI), addressing motor imagery decoding across both subjects and data sets.
arXiv Detail & Related papers (2022-02-14T12:12:20Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
We propose a novel deep neural network architecture to integrate imaging and genetics data, as guided by diagnosis, that provides interpretable biomarkers.
We have evaluated our model on a population study of schizophrenia that includes two functional MRI (fMRI) paradigms and Single Nucleotide Polymorphism (SNP) data.
arXiv Detail & Related papers (2021-01-27T19:28:04Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z) - Adversarial Multi-Source Transfer Learning in Healthcare: Application to
Glucose Prediction for Diabetic People [4.17510581764131]
We propose a multi-source adversarial transfer learning framework that enables the learning of a feature representation that is similar across the sources.
We apply this idea to glucose forecasting for diabetic people using a fully convolutional neural network.
In particular, it shines when using data from different datasets, or when there is too little data in an intra-dataset situation.
arXiv Detail & Related papers (2020-06-29T11:17:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.