UniHOI: Learning Fast, Dense and Generalizable 4D Reconstruction for Egocentric Hand Object Interaction Videos
- URL: http://arxiv.org/abs/2411.09145v2
- Date: Fri, 15 Nov 2024 12:27:39 GMT
- Title: UniHOI: Learning Fast, Dense and Generalizable 4D Reconstruction for Egocentric Hand Object Interaction Videos
- Authors: Chengbo Yuan, Geng Chen, Li Yi, Yang Gao,
- Abstract summary: We introduce UniHOI, a model that unifies the estimation of all variables necessary for dense 4D reconstruction.
UniHOI is the first approach to offer fast, dense, and general monocular egocentric HOI scene reconstruction in the presence of motion.
- Score: 25.41337525728398
- License:
- Abstract: Egocentric Hand Object Interaction (HOI) videos provide valuable insights into human interactions with the physical world, attracting growing interest from the computer vision and robotics communities. A key task in fully understanding the geometry and dynamics of HOI scenes is dense pointclouds sequence reconstruction. However, the inherent motion of both hands and the camera makes this challenging. Current methods often rely on time-consuming test-time optimization, making them impractical for reconstructing internet-scale videos. To address this, we introduce UniHOI, a model that unifies the estimation of all variables necessary for dense 4D reconstruction, including camera intrinsic, camera poses, and video depth, for egocentric HOI scene in a fast feed-forward manner. We end-to-end optimize all these variables to improve their consistency in 3D space. Furthermore, our model could be trained solely on large-scale monocular video dataset, overcoming the limitation of scarce labeled HOI data. We evaluate UniHOI with both in-domain and zero-shot generalization setting, surpassing all baselines in pointclouds sequence reconstruction and long-term 3D scene flow recovery. UniHOI is the first approach to offer fast, dense, and generalizable monocular egocentric HOI scene reconstruction in the presence of motion. Code and trained model will be released in the future.
Related papers
- Ego3DT: Tracking Every 3D Object in Ego-centric Videos [20.96550148331019]
This paper introduces a novel zero-shot approach for the 3D reconstruction and tracking of all objects from the ego-centric video.
We present Ego3DT, a novel framework that initially identifies and extracts detection and segmentation information of objects within the ego environment.
We have also innovated a dynamic hierarchical association mechanism for creating stable 3D tracking trajectories of objects in ego-centric videos.
arXiv Detail & Related papers (2024-10-11T05:02:31Z) - EgoGaussian: Dynamic Scene Understanding from Egocentric Video with 3D Gaussian Splatting [95.44545809256473]
EgoGaussian is a method capable of simultaneously reconstructing 3D scenes and dynamically tracking 3D object motion from RGB egocentric input alone.
We show significant improvements in terms of both dynamic object and background reconstruction quality compared to the state-of-the-art.
arXiv Detail & Related papers (2024-06-28T10:39:36Z) - Benchmarks and Challenges in Pose Estimation for Egocentric Hand Interactions with Objects [89.95728475983263]
holistic 3Dunderstanding of such interactions from egocentric views is important for tasks in robotics, AR/VR, action recognition and motion generation.
We design the HANDS23 challenge based on the AssemblyHands and ARCTIC datasets with carefully designed training and testing splits.
Based on the results of the top submitted methods and more recent baselines on the leaderboards, we perform a thorough analysis on 3D hand(-object) reconstruction tasks.
arXiv Detail & Related papers (2024-03-25T05:12:21Z) - DO3D: Self-supervised Learning of Decomposed Object-aware 3D Motion and
Depth from Monocular Videos [76.01906393673897]
We propose a self-supervised method to jointly learn 3D motion and depth from monocular videos.
Our system contains a depth estimation module to predict depth, and a new decomposed object-wise 3D motion (DO3D) estimation module to predict ego-motion and 3D object motion.
Our model delivers superior performance in all evaluated settings.
arXiv Detail & Related papers (2024-03-09T12:22:46Z) - HOLD: Category-agnostic 3D Reconstruction of Interacting Hands and
Objects from Video [70.11702620562889]
HOLD -- the first category-agnostic method that reconstructs an articulated hand and object jointly from a monocular interaction video.
We develop a compositional articulated implicit model that can disentangled 3D hand and object from 2D images.
Our method does not rely on 3D hand-object annotations while outperforming fully-supervised baselines in both in-the-lab and challenging in-the-wild settings.
arXiv Detail & Related papers (2023-11-30T10:50:35Z) - Diffusion-Guided Reconstruction of Everyday Hand-Object Interaction
Clips [38.02945794078731]
We tackle the task of reconstructing hand-object interactions from short video clips.
Our approach casts 3D inference as a per-video optimization and recovers a neural 3D representation of the object shape.
We empirically evaluate our approach on egocentric videos, and observe significant improvements over prior single-view and multi-view methods.
arXiv Detail & Related papers (2023-09-11T17:58:30Z) - Learning Dynamic View Synthesis With Few RGBD Cameras [60.36357774688289]
We propose to utilize RGBD cameras to synthesize free-viewpoint videos of dynamic indoor scenes.
We generate point clouds from RGBD frames and then render them into free-viewpoint videos via a neural feature.
We introduce a simple Regional Depth-Inpainting module that adaptively inpaints missing depth values to render complete novel views.
arXiv Detail & Related papers (2022-04-22T03:17:35Z) - Class-agnostic Reconstruction of Dynamic Objects from Videos [127.41336060616214]
We introduce REDO, a class-agnostic framework to REconstruct the Dynamic Objects from RGBD or calibrated videos.
We develop two novel modules. First, we introduce a canonical 4D implicit function which is pixel-aligned with aggregated temporal visual cues.
Second, we develop a 4D transformation module which captures object dynamics to support temporal propagation and aggregation.
arXiv Detail & Related papers (2021-12-03T18:57:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.