Cross Space and Time: A Spatio-Temporal Unitized Model for Traffic Flow Forecasting
- URL: http://arxiv.org/abs/2411.09251v1
- Date: Thu, 14 Nov 2024 07:34:31 GMT
- Title: Cross Space and Time: A Spatio-Temporal Unitized Model for Traffic Flow Forecasting
- Authors: Weilin Ruan, Wenzhuo Wang, Siru Zhong, Wei Chen, Li Liu, Yuxuan Liang,
- Abstract summary: Predicting backbone-temporal traffic flow presents challenges due to complex interactions between temporal factors.
Existing approaches address these dimensions in isolation, neglecting their critical interdependencies.
In this paper, we introduce Sanonymous-Temporal Unitized Unitized Cell (ASTUC), a unified framework designed to capture both spatial and temporal dependencies.
- Score: 16.782154479264126
- License:
- Abstract: Predicting spatio-temporal traffic flow presents significant challenges due to complex interactions between spatial and temporal factors. Existing approaches often address these dimensions in isolation, neglecting their critical interdependencies. In this paper, we introduce the Spatio-Temporal Unitized Model (STUM), a unified framework designed to capture both spatial and temporal dependencies while addressing spatio-temporal heterogeneity through techniques such as distribution alignment and feature fusion. It also ensures both predictive accuracy and computational efficiency. Central to STUM is the Adaptive Spatio-temporal Unitized Cell (ASTUC), which utilizes low-rank matrices to seamlessly store, update, and interact with space, time, as well as their correlations. Our framework is also modular, allowing it to integrate with various spatio-temporal graph neural networks through components such as backbone models, feature extractors, residual fusion blocks, and predictive modules to collectively enhance forecasting outcomes. Experimental results across multiple real-world datasets demonstrate that STUM consistently improves prediction performance with minimal computational cost. These findings are further supported by hyperparameter optimization, pre-training analysis, and result visualization. We provide our source code for reproducibility at https://anonymous.4open.science/r/STUM-E4F0.
Related papers
- Temporal Feature Matters: A Framework for Diffusion Model Quantization [105.3033493564844]
Diffusion models rely on the time-step for the multi-round denoising.
We introduce a novel quantization framework that includes three strategies.
This framework preserves most of the temporal information and ensures high-quality end-to-end generation.
arXiv Detail & Related papers (2024-07-28T17:46:15Z) - STD-PLM: Understanding Both Spatial and Temporal Properties of Spatial-Temporal Data with PLM [18.56267873980915]
STD-PLM is capable of implementing both spatial-temporal forecasting and imputation tasks.
STD-PLM understands spatial-temporal correlations via explicitly designed spatial and temporal tokenizers.
STD-PLM exhibits competitive performance and generalization capabilities across the forecasting and imputation tasks.
arXiv Detail & Related papers (2024-07-12T08:48:16Z) - SFANet: Spatial-Frequency Attention Network for Weather Forecasting [54.470205739015434]
Weather forecasting plays a critical role in various sectors, driving decision-making and risk management.
Traditional methods often struggle to capture the complex dynamics of meteorological systems.
We propose a novel framework designed to address these challenges and enhance the accuracy of weather prediction.
arXiv Detail & Related papers (2024-05-29T08:00:15Z) - A Decoupled Spatio-Temporal Framework for Skeleton-based Action
Segmentation [89.86345494602642]
Existing methods are limited in weak-temporal modeling capability.
We propose a Decoupled Scoupled Framework (DeST) to address the issues.
DeST significantly outperforms current state-of-the-art methods with less computational complexity.
arXiv Detail & Related papers (2023-12-10T09:11:39Z) - GATGPT: A Pre-trained Large Language Model with Graph Attention Network
for Spatiotemporal Imputation [19.371155159744934]
In real-world settings, such data often contain missing elements due to issues like sensor malfunctions and data transmission errors.
The objective oftemporal imputation is to estimate these missing values by understanding the inherent spatial and temporal relationships in the observed time series.
Traditionally, intricatetemporal imputation has relied on specific architectures, which suffer from limited applicability and high computational complexity.
In contrast our approach integrates pre-trained large language models (LLMs) into intricatetemporal imputation, introducing a groundbreaking framework, GATGPT.
arXiv Detail & Related papers (2023-11-24T08:15:11Z) - OpenSTL: A Comprehensive Benchmark of Spatio-Temporal Predictive
Learning [67.07363529640784]
We propose OpenSTL to categorize prevalent approaches into recurrent-based and recurrent-free models.
We conduct standard evaluations on datasets across various domains, including synthetic moving object trajectory, human motion, driving scenes, traffic flow and forecasting weather.
We find that recurrent-free models achieve a good balance between efficiency and performance than recurrent models.
arXiv Detail & Related papers (2023-06-20T03:02:14Z) - Spatio-temporal Diffusion Point Processes [23.74522530140201]
patio-temporal point process (STPP) is a collection of events accompanied with time and space.
The failure to model the joint distribution leads to limited capacities in characterizing the pasthua-temporal interactions given events.
We propose a novel parameterization framework, which learns complex spatial-temporal joint distributions.
Our framework outperforms the state-of-the-art baselines remarkably, with an average improvement over 50%.
arXiv Detail & Related papers (2023-05-21T08:53:00Z) - Towards Spatio-Temporal Aware Traffic Time Series Forecasting--Full
Version [37.09531298150374]
Traffic series forecasting is challenging due to complex time series patterns for the same time series patterns may vary across time, where, for example, there exist periods across a day showing stronger temporal correlations.
Such-temporal models employ a shared parameter space irrespective of the time locations and the time periods and they assume that the temporal correlations are similar across locations and do not always hold across time which may not always be the case.
We propose a framework that aims at turning ICD-temporal aware models to encode sub-temporal models.
arXiv Detail & Related papers (2022-03-29T16:44:56Z) - Spatio-Temporal Functional Neural Networks [11.73856529960872]
We propose two novel extensions of the Neural Functional Network (FNN), a temporal regression model whose effectiveness has been proven by many researchers.
The proposed models are then deployed to solve a practical and challenging precipitation prediction problem in the meteorology field.
arXiv Detail & Related papers (2020-09-11T21:32:35Z) - Supporting Optimal Phase Space Reconstructions Using Neural Network
Architecture for Time Series Modeling [68.8204255655161]
We propose an artificial neural network with a mechanism to implicitly learn the phase spaces properties.
Our approach is either as competitive as or better than most state-of-the-art strategies.
arXiv Detail & Related papers (2020-06-19T21:04:47Z) - Spatial-Temporal Transformer Networks for Traffic Flow Forecasting [74.76852538940746]
We propose a novel paradigm of Spatial-Temporal Transformer Networks (STTNs) to improve the accuracy of long-term traffic forecasting.
Specifically, we present a new variant of graph neural networks, named spatial transformer, by dynamically modeling directed spatial dependencies.
The proposed model enables fast and scalable training over a long range spatial-temporal dependencies.
arXiv Detail & Related papers (2020-01-09T10:21:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.