DSCformer: A Dual-Branch Network Integrating Enhanced Dynamic Snake Convolution and SegFormer for Crack Segmentation
- URL: http://arxiv.org/abs/2411.09371v1
- Date: Thu, 14 Nov 2024 11:25:32 GMT
- Title: DSCformer: A Dual-Branch Network Integrating Enhanced Dynamic Snake Convolution and SegFormer for Crack Segmentation
- Authors: Kaiwei Yu, I-Ming Chen, Jing Wu,
- Abstract summary: Current convolutional neural networks (CNNs) have demonstrated strong performance in crack segmentation tasks.
Transformers excel at capturing global context but lack precision in detailed feature extraction.
We introduce DSCformer, a novel hybrid model that integrates an enhanced Dynamic Snake Convolution (DSConv) with a Transformer architecture for crack segmentation.
- Score: 6.898227391740093
- License:
- Abstract: In construction quality monitoring, accurately detecting and segmenting cracks in concrete structures is paramount for safety and maintenance. Current convolutional neural networks (CNNs) have demonstrated strong performance in crack segmentation tasks, yet they often struggle with complex backgrounds and fail to capture fine-grained tubular structures fully. In contrast, Transformers excel at capturing global context but lack precision in detailed feature extraction. We introduce DSCformer, a novel hybrid model that integrates an enhanced Dynamic Snake Convolution (DSConv) with a Transformer architecture for crack segmentation to address these challenges. Our key contributions include the enhanced DSConv through a pyramid kernel for adaptive offset computation and a simultaneous bi-directional learnable offset iteration, significantly improving the model's performance to capture intricate crack patterns. Additionally, we propose a Weighted Convolutional Attention Module (WCAM), which refines channel attention, allowing for more precise and adaptive feature attention. We evaluate DSCformer on the Crack3238 and FIND datasets, achieving IoUs of 59.22\% and 87.24\%, respectively. The experimental results suggest that our DSCformer outperforms state-of-the-art methods across different datasets.
Related papers
- S3TU-Net: Structured Convolution and Superpixel Transformer for Lung Nodule Segmentation [5.2752693301728355]
We propose a segmentation model, S3TU-Net, which integrates multi-dimensional spatial connectors and a superpixel-based visual transformer.
S3TU-Net is built on a multi-view CNN-Transformer hybrid architecture, incorporating superpixel algorithms, structured weighting, and spatial shifting techniques.
Experimental results on the LIDC-IDRI dataset demonstrate that S3TU-Net achieves a DSC, precision, and IoU of 89.04%, 90.73%, and 90.70%, respectively.
arXiv Detail & Related papers (2024-11-19T15:00:18Z) - Topology-aware Mamba for Crack Segmentation in Structures [5.9184143707401775]
CrackMamba, a Mamba-based model, is designed for efficient and accurate crack segmentation for monitoring the structural health of infrastructure.
CrackMamba addresses these challenges by utilizing the VMambaV2 with pre-trained ImageNet-1k weights as the encoder and a newly designed decoder for better performance.
Experiments show that CrackMamba achieves state-of-the-art (SOTA) performance on the CrackSeg9k and SewerCrack datasets, and demonstrates competitive performance on the retinal vessel segmentation dataset CHASEunderlineDB1.
arXiv Detail & Related papers (2024-10-25T15:17:52Z) - Hybrid-Segmentor: A Hybrid Approach to Automated Fine-Grained Crack Segmentation in Civil Infrastructure [52.2025114590481]
We introduce Hybrid-Segmentor, an encoder-decoder based approach that is capable of extracting both fine-grained local and global crack features.
This allows the model to improve its generalization capabilities in distinguish various type of shapes, surfaces and sizes of cracks.
The proposed model outperforms existing benchmark models across 5 quantitative metrics (accuracy 0.971, precision 0.804, recall 0.744, F1-score 0.770, and IoU score 0.630), achieving state-of-the-art status.
arXiv Detail & Related papers (2024-09-04T16:47:16Z) - Embracing Events and Frames with Hierarchical Feature Refinement Network for Object Detection [17.406051477690134]
Event cameras output sparse and asynchronous events, providing a potential solution to solve these problems.
We propose a novel hierarchical feature refinement network for event-frame fusion.
Our method exhibits significantly better robustness when introducing 15 different corruption types to the frame images.
arXiv Detail & Related papers (2024-07-17T14:09:46Z) - Coarse-Fine Spectral-Aware Deformable Convolution For Hyperspectral Image Reconstruction [15.537910100051866]
We study the inverse problem of Coded Aperture Snapshot Spectral Imaging (CASSI)
We propose Coarse-Fine Spectral-Aware Deformable Convolution Network (CFSDCN)
Our CFSDCN significantly outperforms previous state-of-the-art (SOTA) methods on both simulated and real HSI datasets.
arXiv Detail & Related papers (2024-06-18T15:15:12Z) - TCCT-Net: Two-Stream Network Architecture for Fast and Efficient Engagement Estimation via Behavioral Feature Signals [58.865901821451295]
We present a novel two-stream feature fusion "Tensor-Convolution and Convolution-Transformer Network" (TCCT-Net) architecture.
To better learn the meaningful patterns in the temporal-spatial domain, we design a "CT" stream that integrates a hybrid convolutional-transformer.
In parallel, to efficiently extract rich patterns from the temporal-frequency domain, we introduce a "TC" stream that uses Continuous Wavelet Transform (CWT) to represent information in a 2D tensor form.
arXiv Detail & Related papers (2024-04-15T06:01:48Z) - S^2Former-OR: Single-Stage Bi-Modal Transformer for Scene Graph Generation in OR [50.435592120607815]
Scene graph generation (SGG) of surgical procedures is crucial in enhancing holistically cognitive intelligence in the operating room (OR)
Previous works have primarily relied on multi-stage learning, where the generated semantic scene graphs depend on intermediate processes with pose estimation and object detection.
In this study, we introduce a novel single-stage bi-modal transformer framework for SGG in the OR, termed S2Former-OR.
arXiv Detail & Related papers (2024-02-22T11:40:49Z) - SCHEME: Scalable Channel Mixer for Vision Transformers [52.605868919281086]
Vision Transformers have achieved impressive performance in many vision tasks.
Much less research has been devoted to the channel mixer or feature mixing block (FFN or)
We show that the dense connections can be replaced with a diagonal block structure that supports larger expansion ratios.
arXiv Detail & Related papers (2023-12-01T08:22:34Z) - Generalized Face Forgery Detection via Adaptive Learning for Pre-trained Vision Transformer [54.32283739486781]
We present a textbfForgery-aware textbfAdaptive textbfVision textbfTransformer (FA-ViT) under the adaptive learning paradigm.
FA-ViT achieves 93.83% and 78.32% AUC scores on Celeb-DF and DFDC datasets in the cross-dataset evaluation.
arXiv Detail & Related papers (2023-09-20T06:51:11Z) - A Convolutional-Transformer Network for Crack Segmentation with Boundary
Awareness [5.98717173705421]
Cracks play a crucial role in assessing the safety and durability of manufactured buildings.
We propose a novel convolutional-transformer network based on encoder-decoder architecture to solve this challenge.
arXiv Detail & Related papers (2023-02-23T01:27:57Z) - CSformer: Bridging Convolution and Transformer for Compressive Sensing [65.22377493627687]
This paper proposes a hybrid framework that integrates the advantages of leveraging detailed spatial information from CNN and the global context provided by transformer for enhanced representation learning.
The proposed approach is an end-to-end compressive image sensing method, composed of adaptive sampling and recovery.
The experimental results demonstrate the effectiveness of the dedicated transformer-based architecture for compressive sensing.
arXiv Detail & Related papers (2021-12-31T04:37:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.