An Improved Bound on Nonlinear Quantum Mechanics using a Cryogenic Radio Frequency Experiment
- URL: http://arxiv.org/abs/2411.09611v1
- Date: Thu, 14 Nov 2024 17:31:33 GMT
- Title: An Improved Bound on Nonlinear Quantum Mechanics using a Cryogenic Radio Frequency Experiment
- Authors: Oleksandr Melnychuk, Bianca Giaccone, Nicholas Bornman, Raphael Cervantes, Anna Grassellino, Roni Harnik, David E. Kaplan, Geev Nahal, Roman Pilipenko, Sam Posen, Surjeet Rajendran, Alexander O. Sushkov,
- Abstract summary: We set a new limit on the electromagnetic nonlinearity parameter $|epsilon| lessapprox 1.15 times 10-12$, at a 90.0% confidence level.
This is the most stringent limit on nonlinear quantum mechanics thus far and an improvement by nearly a factor of 50 over the previous experimental limit.
- Score: 41.48817643709061
- License:
- Abstract: There are strong arguments that quantum mechanics may be nonlinear in its dynamics. A discovery of nonlinearity would hint at a novel understanding of the interplay between gravity and quantum field theory, for example. As such, experiments searching for potential nonlinear effects in the electromagnetic sector are important. Here we outline such an experiment, consisting of a stream of random bits (which were generated using Rigetti's Aspen-M-3 chip) as input to an RF signal generator coupled to a cryogenic detector. Projective measurements of the qubit state, which is originally prepared in an equal superposition, serve as the random binary output of a signal generator. Thereafter, spectral analysis of the RF detector would yield a detectable excess signal predicted to arise from such a nonlinear effect. A comparison between the projective measurements of the quantum bits vs the classical baseline showed no power excess. This sets a new limit on the electromagnetic nonlinearity parameter $|\epsilon| \lessapprox 1.15 \times 10^{-12}$, at a 90.0% confidence level. This is the most stringent limit on nonlinear quantum mechanics thus far and an improvement by nearly a factor of 50 over the previous experimental limit.
Related papers
- Scheme for continuous force detection with a single electron at the
$10^{-27}\mathrm{N}$ level [0.0]
We propose a new scheme for high-sensitivity continuous force detection using a single trapped electron.
Despite the disparity in size between that of a single electron and the wavelength of the microwave field, it is possible to continuously monitor the charge's zero-point motion.
This sensitivity improves on the state-of-the-art by four orders of magnitude and thus paves the way to novel precision experiments.
arXiv Detail & Related papers (2024-02-08T19:00:06Z) - Weak Kerr Nonlinearity Boosts the Performance of Frequency-Multiplexed
Photonic Extreme Learning Machines: A Multifaceted Approach [49.1574468325115]
We investigate the Kerr nonlinearity impact on the performance of a frequency-multiplexed Extreme Learning Machine (ELM)
The Kerr nonlinearity facilitates the randomized neuron connections allowing for efficient information mixing.
We introduce a model to show that, in frequency-multiplexed ELMs, the Kerr nonlinearity mixes information via four-wave mixing, rather than via self- or cross-phase modulation.
arXiv Detail & Related papers (2023-12-19T16:18:59Z) - Achieving the fundamental quantum limit of linear waveform estimation [10.363406065066538]
In certain cases, there is an unexplained gap between the known waveform-estimation Quantum Cram'er-Rao Bound and the optimal sensitivity from quadrature measurement of the outgoing mode from the device.
We resolve this gap by establishing the fundamental precision limit, the waveform-estimation Holevo Cram'er-Rao Bound, and how to achieve it using a nonstationary measurement.
arXiv Detail & Related papers (2023-08-11T17:38:30Z) - First design of a superconducting qubit for the QUB-IT experiment [50.591267188664666]
The goal of the QUB-IT project is to realize an itinerant single-photon counter exploiting Quantum Non Demolition (QND) measurements and entangled qubits.
We present the design and simulation of the first superconducting device consisting of a transmon qubit coupled to a resonator using Qiskit-Metal.
arXiv Detail & Related papers (2022-07-18T07:05:10Z) - Test of Causal Non-Linear Quantum Mechanics by Ramsey Interferometry on
the Vibrational Mode of a Trapped Ion [0.0]
Causal non-linear theories have the unavoidable feature that their quantum effects are dramatically sensitive to the full physical spread of the quantum state of the system.
We set a stringent limit of $5.4times 10-12$ on the magnitude of the unitless scaling factor $tildeepsilon_gamma$ for the predicted causal, non-linear perturbation.
arXiv Detail & Related papers (2022-06-26T21:23:16Z) - Experimental limit on non-linear state-dependent terms in quantum theory [110.83289076967895]
We implement blinded measurement and data analysis with three control bit strings.
Control of systematic effects is realized by producing one of the control bit strings with a classical random-bit generator.
Our measurements find no evidence for electromagnetic quantum state-dependent non-linearity.
arXiv Detail & Related papers (2022-04-25T18:00:03Z) - Enhanced nonlinear quantum metrology with weakly coupled solitons and
particle losses [58.720142291102135]
We offer an interferometric procedure for phase parameters estimation at the Heisenberg (up to 1/N) and super-Heisenberg scaling levels.
The heart of our setup is the novel soliton Josephson Junction (SJJ) system providing the formation of the quantum probe.
We illustrate that such states are close to the optimal ones even with moderate losses.
arXiv Detail & Related papers (2021-08-07T09:29:23Z) - Designing Kerr Interactions for Quantum Information Processing via
Counterrotating Terms of Asymmetric Josephson-Junction Loops [68.8204255655161]
static cavity nonlinearities typically limit the performance of bosonic quantum error-correcting codes.
Treating the nonlinearity as a perturbation, we derive effective Hamiltonians using the Schrieffer-Wolff transformation.
Results show that a cubic interaction allows to increase the effective rates of both linear and nonlinear operations.
arXiv Detail & Related papers (2021-07-14T15:11:05Z) - Accurately computing electronic properties of a quantum ring [0.08564085951364296]
We provide an experimental blueprint for an accurate condensed-matter simulator using eighteen superconducting qubits.
We benchmark the underlying method by reconstructing the single-particle band-structure of a one-dimensional wire.
We synthesize magnetic flux and disordered local potentials, two key tenets of a condensed-matter system.
arXiv Detail & Related papers (2020-12-02T01:42:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.