AI-Driven Human-Autonomy Teaming in Tactical Operations: Proposed Framework, Challenges, and Future Directions
- URL: http://arxiv.org/abs/2411.09788v1
- Date: Mon, 28 Oct 2024 15:05:16 GMT
- Title: AI-Driven Human-Autonomy Teaming in Tactical Operations: Proposed Framework, Challenges, and Future Directions
- Authors: Desta Haileselassie Hagos, Hassan El Alami, Danda B. Rawat,
- Abstract summary: Artificial Intelligence (AI) techniques are transforming tactical operations by augmenting human decision-making capabilities.
This paper explores AI-driven Human-Autonomy Teaming (HAT) as a transformative approach.
We propose a comprehensive framework that addresses the key components of AI-driven HAT.
- Score: 10.16399860867284
- License:
- Abstract: Artificial Intelligence (AI) techniques, particularly machine learning techniques, are rapidly transforming tactical operations by augmenting human decision-making capabilities. This paper explores AI-driven Human-Autonomy Teaming (HAT) as a transformative approach, focusing on how it empowers human decision-making in complex environments. While trust and explainability continue to pose significant challenges, our exploration focuses on the potential of AI-driven HAT to transform tactical operations. By improving situational awareness and supporting more informed decision-making, AI-driven HAT can enhance the effectiveness and safety of such operations. To this end, we propose a comprehensive framework that addresses the key components of AI-driven HAT, including trust and transparency, optimal function allocation between humans and AI, situational awareness, and ethical considerations. The proposed framework can serve as a foundation for future research and development in the field. By identifying and discussing critical research challenges and knowledge gaps in this framework, our work aims to guide the advancement of AI-driven HAT for optimizing tactical operations. We emphasize the importance of developing scalable and ethical AI-driven HAT systems that ensure seamless human-machine collaboration, prioritize ethical considerations, enhance model transparency through Explainable AI (XAI) techniques, and effectively manage the cognitive load of human operators.
Related papers
- Imagining and building wise machines: The centrality of AI metacognition [78.76893632793497]
We argue that shortcomings stem from one overarching failure: AI systems lack wisdom.
While AI research has focused on task-level strategies, metacognition is underdeveloped in AI systems.
We propose that integrating metacognitive capabilities into AI systems is crucial for enhancing their robustness, explainability, cooperation, and safety.
arXiv Detail & Related papers (2024-11-04T18:10:10Z) - Combining AI Control Systems and Human Decision Support via Robustness and Criticality [53.10194953873209]
We extend a methodology for adversarial explanations (AE) to state-of-the-art reinforcement learning frameworks.
We show that the learned AI control system demonstrates robustness against adversarial tampering.
In a training / learning framework, this technology can improve both the AI's decisions and explanations through human interaction.
arXiv Detail & Related papers (2024-07-03T15:38:57Z) - The Ethics of Advanced AI Assistants [53.89899371095332]
This paper focuses on the opportunities and the ethical and societal risks posed by advanced AI assistants.
We define advanced AI assistants as artificial agents with natural language interfaces, whose function is to plan and execute sequences of actions on behalf of a user.
We consider the deployment of advanced assistants at a societal scale, focusing on cooperation, equity and access, misinformation, economic impact, the environment and how best to evaluate advanced AI assistants.
arXiv Detail & Related papers (2024-04-24T23:18:46Z) - Quantifying AI Vulnerabilities: A Synthesis of Complexity, Dynamical Systems, and Game Theory [0.0]
We propose a novel approach that introduces three metrics: System Complexity Index (SCI), Lyapunov Exponent for AI Stability (LEAIS), and Nash Equilibrium Robustness (NER)
SCI quantifies the inherent complexity of an AI system, LEAIS captures its stability and sensitivity to perturbations, and NER evaluates its strategic robustness against adversarial manipulation.
arXiv Detail & Related papers (2024-04-07T07:05:59Z) - Towards Human-AI Deliberation: Design and Evaluation of LLM-Empowered Deliberative AI for AI-Assisted Decision-Making [47.33241893184721]
In AI-assisted decision-making, humans often passively review AI's suggestion and decide whether to accept or reject it as a whole.
We propose Human-AI Deliberation, a novel framework to promote human reflection and discussion on conflicting human-AI opinions in decision-making.
Based on theories in human deliberation, this framework engages humans and AI in dimension-level opinion elicitation, deliberative discussion, and decision updates.
arXiv Detail & Related papers (2024-03-25T14:34:06Z) - Position Paper: Agent AI Towards a Holistic Intelligence [53.35971598180146]
We emphasize developing Agent AI -- an embodied system that integrates large foundation models into agent actions.
In this paper, we propose a novel large action model to achieve embodied intelligent behavior, the Agent Foundation Model.
arXiv Detail & Related papers (2024-02-28T16:09:56Z) - Testing autonomous vehicles and AI: perspectives and challenges from cybersecurity, transparency, robustness and fairness [53.91018508439669]
The study explores the complexities of integrating Artificial Intelligence into Autonomous Vehicles (AVs)
It examines the challenges introduced by AI components and the impact on testing procedures.
The paper identifies significant challenges and suggests future directions for research and development of AI in AV technology.
arXiv Detail & Related papers (2024-02-21T08:29:42Z) - Advancing Explainable AI Toward Human-Like Intelligence: Forging the
Path to Artificial Brain [0.7770029179741429]
The intersection of Artificial Intelligence (AI) and neuroscience in Explainable AI (XAI) is pivotal for enhancing transparency and interpretability in complex decision-making processes.
This paper explores the evolution of XAI methodologies, ranging from feature-based to human-centric approaches.
The challenges in achieving explainability in generative models, ensuring responsible AI practices, and addressing ethical implications are discussed.
arXiv Detail & Related papers (2024-02-07T14:09:11Z) - A call for embodied AI [1.7544885995294304]
We propose Embodied AI as the next fundamental step in the pursuit of Artificial General Intelligence.
By broadening the scope of Embodied AI, we introduce a theoretical framework based on cognitive architectures.
This framework is aligned with Friston's active inference principle, offering a comprehensive approach to EAI development.
arXiv Detail & Related papers (2024-02-06T09:11:20Z) - AI Potentiality and Awareness: A Position Paper from the Perspective of
Human-AI Teaming in Cybersecurity [18.324118502535775]
We argue that human-AI teaming is worthwhile in cybersecurity.
We emphasize the importance of a balanced approach that incorporates AI's computational power with human expertise.
arXiv Detail & Related papers (2023-09-28T01:20:44Z) - Towards Explainable Artificial Intelligence in Banking and Financial
Services [0.0]
We study and analyze the recent work done in Explainable Artificial Intelligence (XAI) methods and tools.
We introduce a novel XAI process, which facilitates producing explainable models while maintaining a high level of learning performance.
We develop a digital dashboard to facilitate interacting with the algorithm results.
arXiv Detail & Related papers (2021-12-14T08:02:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.