Automatic Classification of General Movements in Newborns
- URL: http://arxiv.org/abs/2411.09821v2
- Date: Tue, 19 Nov 2024 14:57:40 GMT
- Title: Automatic Classification of General Movements in Newborns
- Authors: Daphné Chopard, Sonia Laguna, Kieran Chin-Cheong, Annika Dietz, Anna Badura, Sven Wellmann, Julia E. Vogt,
- Abstract summary: General movements (GMs) are reliable predictors for neurodevelopmental disorders.
To scale up newborn screening, there is a need for an algorithm that can automatically classify GMs from infant video recordings.
In this work, we introduce a tool for extracting features from these recordings and explore various machine learning techniques for automated GM classification.
- Score: 9.308383767711367
- License:
- Abstract: General movements (GMs) are spontaneous, coordinated body movements in infants that offer valuable insights into the developing nervous system. Assessed through the Prechtl GM Assessment (GMA), GMs are reliable predictors for neurodevelopmental disorders. However, GMA requires specifically trained clinicians, who are limited in number. To scale up newborn screening, there is a need for an algorithm that can automatically classify GMs from infant video recordings. This data poses challenges, including variability in recording length, device type, and setting, with each video coarsely annotated for overall movement quality. In this work, we introduce a tool for extracting features from these recordings and explore various machine learning techniques for automated GM classification.
Related papers
- MR-GDINO: Efficient Open-World Continual Object Detection [58.066277387205325]
We propose an open-world continual object detection task requiring detectors to generalize to old, new, and unseen categories.
We present a challenging yet practical OW-COD benchmark to assess detection abilities.
To mitigate forgetting in unseen categories, we propose MR-GDINO, a strong, efficient and scalable baseline via memory and retrieval mechanisms.
arXiv Detail & Related papers (2024-12-20T15:22:51Z) - Deep learning empowered sensor fusion boosts infant movement classification [2.5114056348393197]
We propose a sensor fusion approach for assessing fidgety movements (FMs)
Various combinations and two sensor fusion approaches were tested to evaluate whether a multi-sensor system outperforms single modality assessments.
The performance of the three-sensor fusion (classification accuracy of 94.5%) was significantly higher than that of any single modality evaluated.
arXiv Detail & Related papers (2024-06-13T11:38:58Z) - Dynamic Gaussian Splatting from Markerless Motion Capture can
Reconstruct Infants Movements [2.44755919161855]
This work paves the way for advanced movement analysis tools that can be applied to diverse clinical populations.
We explored the application of dynamic Gaussian splatting to sparse markerless motion capture data.
Our results demonstrate the potential of this method in rendering novel views of scenes and tracking infant movements.
arXiv Detail & Related papers (2023-10-30T11:09:39Z) - Neuroevolutionary algorithms driven by neuron coverage metrics for
semi-supervised classification [60.60571130467197]
In some machine learning applications the availability of labeled instances for supervised classification is limited while unlabeled instances are abundant.
We introduce neuroevolutionary approaches that exploit unlabeled instances by using neuron coverage metrics computed on the neural network architecture encoded by each candidate solution.
arXiv Detail & Related papers (2023-03-05T23:38:44Z) - Self-Supervised Masked Convolutional Transformer Block for Anomaly
Detection [122.4894940892536]
We present a novel self-supervised masked convolutional transformer block (SSMCTB) that comprises the reconstruction-based functionality at a core architectural level.
In this work, we extend our previous self-supervised predictive convolutional attentive block (SSPCAB) with a 3D masked convolutional layer, a transformer for channel-wise attention, as well as a novel self-supervised objective based on Huber loss.
arXiv Detail & Related papers (2022-09-25T04:56:10Z) - Weakly Supervised Online Action Detection for Infant General Movements [20.80510092848336]
We propose a novel approach named WO-GMA to perform fidgety movements localization in the weakly supervised online setting.
Experimental results on dataset with 757 videos of different infants show that WO-GMA can get state-of-the-art video-level classification and cliplevel detection results.
arXiv Detail & Related papers (2022-08-07T05:49:55Z) - Infant movement classification through pressure distribution analysis [2.18942830965993]
We proposed an innovative non-intrusive approach using a pressure sensing device to classify infant general movements (GMs)
We tested the feasibility of using pressure data to differentiate typical GM patterns of the ''fidgety period'' (i.e., fidgety movements) vs. the ''pre-fidgety period'' (i.e., writhing movements)
arXiv Detail & Related papers (2022-07-26T16:14:19Z) - Automated Classification of General Movements in Infants Using a
Two-stream Spatiotemporal Fusion Network [5.541644538483947]
The assessment of general movements (GMs) in infants is a useful tool in the early diagnosis of neurodevelopmental disorders.
Recent video-based GMs classification has attracted attention, but this approach would be strongly affected by irrelevant information.
We propose an automated GMs classification method, which consists of preprocessing networks that remove unnecessary background information.
arXiv Detail & Related papers (2022-07-04T05:21:09Z) - Factored Attention and Embedding for Unstructured-view Topic-related
Ultrasound Report Generation [70.7778938191405]
We propose a novel factored attention and embedding model (termed FAE-Gen) for the unstructured-view topic-related ultrasound report generation.
The proposed FAE-Gen mainly consists of two modules, i.e., view-guided factored attention and topic-oriented factored embedding, which capture the homogeneous and heterogeneous morphological characteristic across different views.
arXiv Detail & Related papers (2022-03-12T15:24:03Z) - Self-Supervised Graph Representation Learning for Neuronal Morphologies [75.38832711445421]
We present GraphDINO, a data-driven approach to learn low-dimensional representations of 3D neuronal morphologies from unlabeled datasets.
We show, in two different species and across multiple brain areas, that this method yields morphological cell type clusterings on par with manual feature-based classification by experts.
Our method could potentially enable data-driven discovery of novel morphological features and cell types in large-scale datasets.
arXiv Detail & Related papers (2021-12-23T12:17:47Z) - Multi-modal Self-supervised Pre-training for Regulatory Genome Across
Cell Types [75.65676405302105]
We propose a simple yet effective approach for pre-training genome data in a multi-modal and self-supervised manner, which we call GeneBERT.
We pre-train our model on the ATAC-seq dataset with 17 million genome sequences.
arXiv Detail & Related papers (2021-10-11T12:48:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.