Deep Autoencoders for Unsupervised Anomaly Detection in Wildfire Prediction
- URL: http://arxiv.org/abs/2411.09844v1
- Date: Thu, 14 Nov 2024 23:19:55 GMT
- Title: Deep Autoencoders for Unsupervised Anomaly Detection in Wildfire Prediction
- Authors: İrem Üstek, Miguel Arana-Catania, Alexander Farr, Ivan Petrunin,
- Abstract summary: Wildfires pose a significantly increasing hazard to global ecosystems due to the climate crisis.
Due to its complex nature, there is an urgent need for innovative approaches to wildfire prediction, such as machine learning.
This research took a unique approach, differentiating from classical supervised learning, and addressed the gap in unsupervised wildfire prediction.
- Score: 42.447827727628734
- License:
- Abstract: Wildfires pose a significantly increasing hazard to global ecosystems due to the climate crisis. Due to its complex nature, there is an urgent need for innovative approaches to wildfire prediction, such as machine learning. This research took a unique approach, differentiating from classical supervised learning, and addressed the gap in unsupervised wildfire prediction using autoencoders and clustering techniques for anomaly detection. Historical weather and normalised difference vegetation index datasets of Australia for 2005 - 2021 were utilised. Two main unsupervised approaches were analysed. The first used a deep autoencoder to obtain latent features, which were then fed into clustering models, isolation forest, local outlier factor and one-class SVM for anomaly detection. The second approach used a deep autoencoder to reconstruct the input data and use reconstruction errors to identify anomalies. Long Short-Term Memory (LSTM) autoencoders and fully connected (FC) autoencoders were employed in this part, both in an unsupervised way learning only from nominal data. The FC autoencoder outperformed its counterparts, achieving an accuracy of 0.71, an F1-score of 0.74, and an MCC of 0.42. These findings highlight the practicality of this method, as it effectively predicts wildfires in the absence of ground truth, utilising an unsupervised learning technique.
Related papers
- VAEMax: Open-Set Intrusion Detection based on OpenMax and Variational Autoencoder [5.733432394442812]
We employ OpenMax and variational autoencoder to propose a dual detection model, VAEMax.
First, we extract flow payload feature based on one-dimensional convolutional neural network.
Then, the OpenMax is used to classify flows, during which some unknown attacks can be detected, while the rest are misclassified into a certain class of known flows.
arXiv Detail & Related papers (2024-03-07T03:48:47Z) - Attention and Autoencoder Hybrid Model for Unsupervised Online Anomaly
Detection [3.6049348666007934]
This paper introduces a hybrid attention and autoencoder (AE) model for unsupervised online anomaly detection in time series.
The autoencoder captures local structural patterns in short embeddings, while the attention model learns long-term features, facilitating parallel computing with positional encoding.
It employs an attention-based mechanism, akin to the deep transformer model, with key architectural modifications for predicting the next time step window in the autoencoder's latent space.
arXiv Detail & Related papers (2024-01-06T22:55:02Z) - Semi-Supervised and Long-Tailed Object Detection with CascadeMatch [91.86787064083012]
We propose a novel pseudo-labeling-based detector called CascadeMatch.
Our detector features a cascade network architecture, which has multi-stage detection heads with progressive confidence thresholds.
We show that CascadeMatch surpasses existing state-of-the-art semi-supervised approaches in handling long-tailed object detection.
arXiv Detail & Related papers (2023-05-24T07:09:25Z) - Improving Dual-Encoder Training through Dynamic Indexes for Negative
Mining [61.09807522366773]
We introduce an algorithm that approximates the softmax with provable bounds and that dynamically maintains the tree.
In our study on datasets with over twenty million targets, our approach cuts error by half in relation to oracle brute-force negative mining.
arXiv Detail & Related papers (2023-03-27T15:18:32Z) - Radial Autoencoders for Enhanced Anomaly Detection [0.0]
In two-class classification tasks like anomaly or fraud detection, unsupervised methods could do even better.
An intuitive approach of anomaly detection can be based on the distances from the centers of mass of the two classes.
arXiv Detail & Related papers (2022-03-29T20:07:30Z) - Memory-augmented Adversarial Autoencoders for Multivariate Time-series
Anomaly Detection with Deep Reconstruction and Prediction [4.033624665609417]
We propose MemAAE, a novel unsupervised anomaly detection method for time-series.
By jointly training two complementary proxy tasks, reconstruction and prediction, we show that detecting anomalies via multiple tasks obtains superior performance.
MemAAE achieves an overall F1 score of 0.90 on four public datasets, significantly outperforming the best baseline by 0.02.
arXiv Detail & Related papers (2021-10-15T18:29:05Z) - Bayesian Autoencoders for Drift Detection in Industrial Environments [69.93875748095574]
Autoencoders are unsupervised models which have been used for detecting anomalies in multi-sensor environments.
Anomalies can come either from real changes in the environment (real drift) or from faulty sensory devices (virtual drift)
arXiv Detail & Related papers (2021-07-28T10:19:58Z) - Source-Agnostic Gravitational-Wave Detection with Recurrent Autoencoders [0.0]
We present an application of anomaly detection techniques based on deep recurrent autoencoders to the problem of detecting gravitational wave signals in laser interferometers.
Trained on noise data, this class of algorithms could detect signals using an unsupervised strategy, without targeting a specific kind of source.
arXiv Detail & Related papers (2021-07-27T09:56:49Z) - Anomaly Detection in Cybersecurity: Unsupervised, Graph-Based and
Supervised Learning Methods in Adversarial Environments [63.942632088208505]
Inherent to today's operating environment is the practice of adversarial machine learning.
In this work, we examine the feasibility of unsupervised learning and graph-based methods for anomaly detection.
We incorporate a realistic adversarial training mechanism when training our supervised models to enable strong classification performance in adversarial environments.
arXiv Detail & Related papers (2021-05-14T10:05:10Z) - Bayesian Optimization with Machine Learning Algorithms Towards Anomaly
Detection [66.05992706105224]
In this paper, an effective anomaly detection framework is proposed utilizing Bayesian Optimization technique.
The performance of the considered algorithms is evaluated using the ISCX 2012 dataset.
Experimental results show the effectiveness of the proposed framework in term of accuracy rate, precision, low-false alarm rate, and recall.
arXiv Detail & Related papers (2020-08-05T19:29:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.