InterFormer: Towards Effective Heterogeneous Interaction Learning for Click-Through Rate Prediction
- URL: http://arxiv.org/abs/2411.09852v1
- Date: Fri, 15 Nov 2024 00:20:36 GMT
- Title: InterFormer: Towards Effective Heterogeneous Interaction Learning for Click-Through Rate Prediction
- Authors: Zhichen Zeng, Xiaolong Liu, Mengyue Hang, Xiaoyi Liu, Qinghai Zhou, Chaofei Yang, Yiqun Liu, Yichen Ruan, Laming Chen, Yuxin Chen, Yujia Hao, Jiaqi Xu, Jade Nie, Xi Liu, Buyun Zhang, Wei Wen, Siyang Yuan, Kai Wang, Wen-Yen Chen, Yiping Han, Huayu Li, Chunzhi Yang, Bo Long, Philip S. Yu, Hanghang Tong, Jiyan Yang,
- Abstract summary: We propose a novel module named InterFormer to learn heterogeneous information interaction in an interleaving style.
Our proposed InterFormer achieves state-of-the-art performance on three public datasets and a large-scale industrial dataset.
- Score: 72.50606292994341
- License:
- Abstract: Click-through rate (CTR) prediction, which predicts the probability of a user clicking an ad, is a fundamental task in recommender systems. The emergence of heterogeneous information, such as user profile and behavior sequences, depicts user interests from different aspects. A mutually beneficial integration of heterogeneous information is the cornerstone towards the success of CTR prediction. However, most of the existing methods suffer from two fundamental limitations, including (1) insufficient inter-mode interaction due to the unidirectional information flow between modes, and (2) aggressive information aggregation caused by early summarization, resulting in excessive information loss. To address the above limitations, we propose a novel module named InterFormer to learn heterogeneous information interaction in an interleaving style. To achieve better interaction learning, InterFormer enables bidirectional information flow for mutually beneficial learning across different modes. To avoid aggressive information aggregation, we retain complete information in each data mode and use a separate bridging arch for effective information selection and summarization. Our proposed InterFormer achieves state-of-the-art performance on three public datasets and a large-scale industrial dataset.
Related papers
- LLM-assisted Explicit and Implicit Multi-interest Learning Framework for Sequential Recommendation [50.98046887582194]
We propose an explicit and implicit multi-interest learning framework to model user interests on two levels: behavior and semantics.
The proposed EIMF framework effectively and efficiently combines small models with LLM to improve the accuracy of multi-interest modeling.
arXiv Detail & Related papers (2024-11-14T13:00:23Z) - Two-stream Multi-level Dynamic Point Transformer for Two-person Interaction Recognition [45.0131792009999]
We propose a point cloud-based network named Two-stream Multi-level Dynamic Point Transformer for two-person interaction recognition.
Our model addresses the challenge of recognizing two-person interactions by incorporating local-region spatial information, appearance information, and motion information.
Our network outperforms state-of-the-art approaches in most standard evaluation settings.
arXiv Detail & Related papers (2023-07-22T03:51:32Z) - Boundary-aware Supervoxel-level Iteratively Refined Interactive 3D Image
Segmentation with Multi-agent Reinforcement Learning [33.181732857907384]
We propose to model interactive image segmentation with a Markov decision process (MDP) and solve it with reinforcement learning (RL)
Considering the large exploration space for voxel-wise prediction, multi-agent reinforcement learning is adopted, where the voxel-level policy is shared among agents.
Experimental results on four benchmark datasets have shown that the proposed method significantly outperforms the state-of-the-arts.
arXiv Detail & Related papers (2023-03-19T15:52:56Z) - Coarse-to-Fine Knowledge-Enhanced Multi-Interest Learning Framework for
Multi-Behavior Recommendation [52.89816309759537]
Multi-types of behaviors (e.g., clicking, adding to cart, purchasing, etc.) widely exist in most real-world recommendation scenarios.
The state-of-the-art multi-behavior models learn behavior dependencies indistinguishably with all historical interactions as input.
We propose a novel Coarse-to-fine Knowledge-enhanced Multi-interest Learning framework to learn shared and behavior-specific interests for different behaviors.
arXiv Detail & Related papers (2022-08-03T05:28:14Z) - Variational Distillation for Multi-View Learning [104.17551354374821]
We design several variational information bottlenecks to exploit two key characteristics for multi-view representation learning.
Under rigorously theoretical guarantee, our approach enables IB to grasp the intrinsic correlation between observations and semantic labels.
arXiv Detail & Related papers (2022-06-20T03:09:46Z) - Masked Transformer for Neighhourhood-aware Click-Through Rate Prediction [74.52904110197004]
We propose Neighbor-Interaction based CTR prediction, which put this task into a Heterogeneous Information Network (HIN) setting.
In order to enhance the representation of the local neighbourhood, we consider four types of topological interaction among the nodes.
We conduct comprehensive experiments on two real world datasets and the experimental results show that our proposed method outperforms state-of-the-art CTR models significantly.
arXiv Detail & Related papers (2022-01-25T12:44:23Z) - Learning Bias-Invariant Representation by Cross-Sample Mutual
Information Minimization [77.8735802150511]
We propose a cross-sample adversarial debiasing (CSAD) method to remove the bias information misused by the target task.
The correlation measurement plays a critical role in adversarial debiasing and is conducted by a cross-sample neural mutual information estimator.
We conduct thorough experiments on publicly available datasets to validate the advantages of the proposed method over state-of-the-art approaches.
arXiv Detail & Related papers (2021-08-11T21:17:02Z) - Information Interaction Profile of Choice Adoption [2.9972063833424216]
We introduce an efficient method to infer the entities interaction network and its evolution according to the temporal distance separating interacting entities.
The interaction profile allows characterizing the mechanisms of the interaction processes.
We show that the effect of a combination of exposures on a user is more than the sum of each exposure's independent effect--there is an interaction.
arXiv Detail & Related papers (2021-04-28T10:42:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.