Motion-Grounded Video Reasoning: Understanding and Perceiving Motion at Pixel Level
- URL: http://arxiv.org/abs/2411.09921v1
- Date: Fri, 15 Nov 2024 03:45:09 GMT
- Title: Motion-Grounded Video Reasoning: Understanding and Perceiving Motion at Pixel Level
- Authors: Andong Deng, Tongjia Chen, Shoubin Yu, Taojiannan Yang, Lincoln Spencer, Yapeng Tian, Ajmal Saeed Mian, Mohit Bansal, Chen Chen,
- Abstract summary: Motion-Grounded Video Reasoning is a new motion understanding task that requires visual answers (video segmentation masks) according to the input question.
This task extends existing grounding work on explicit action/motion grounding to a more general format by enabling implicit reasoning via questions.
We introduce a novel baseline model named Motion-Grounded Video Reasoning Assistant (MORA)
- Score: 63.18855743293851
- License:
- Abstract: In this paper, we introduce Motion-Grounded Video Reasoning, a new motion understanding task that requires generating visual answers (video segmentation masks) according to the input question, and hence needs implicit spatiotemporal reasoning and grounding. This task extends existing spatiotemporal grounding work focusing on explicit action/motion grounding, to a more general format by enabling implicit reasoning via questions. To facilitate the development of the new task, we collect a large-scale dataset called GROUNDMORE, which comprises 1,715 video clips, 249K object masks that are deliberately designed with 4 question types (Causal, Sequential, Counterfactual, and Descriptive) for benchmarking deep and comprehensive motion reasoning abilities. GROUNDMORE uniquely requires models to generate visual answers, providing a more concrete and visually interpretable response than plain texts. It evaluates models on both spatiotemporal grounding and reasoning, fostering to address complex challenges in motion-related video reasoning, temporal perception, and pixel-level understanding. Furthermore, we introduce a novel baseline model named Motion-Grounded Video Reasoning Assistant (MORA). MORA incorporates the multimodal reasoning ability from the Multimodal LLM, the pixel-level perception capability from the grounding model (SAM), and the temporal perception ability from a lightweight localization head. MORA achieves respectable performance on GROUNDMORE outperforming the best existing visual grounding baseline model by an average of 21.5% relatively. We hope this novel and challenging task will pave the way for future advancements in robust and general motion understanding via video reasoning segmentation
Related papers
- MotionLLM: Understanding Human Behaviors from Human Motions and Videos [40.132643319573205]
This study delves into the realm of multi-modality (i.e., video and motion modalities) human behavior understanding.
We present MotionLLM, a framework for human motion understanding, captioning, and reasoning.
arXiv Detail & Related papers (2024-05-30T17:59:50Z) - Look, Remember and Reason: Grounded reasoning in videos with language
models [5.3445140425713245]
Multi-temporal language models (LM) have recently shown promising performance in high-level reasoning tasks on videos.
We propose training an LM end-to-end on low-level surrogate tasks, including object detection, re-identification, tracking, to endow the model with the required low-level visual capabilities.
We demonstrate the effectiveness of our framework on diverse visual reasoning tasks from the ACRE, CATER, Something-Else and STAR datasets.
arXiv Detail & Related papers (2023-06-30T16:31:14Z) - Masked Motion Encoding for Self-Supervised Video Representation Learning [84.24773072241945]
We present Masked Motion MME, a new pre-training paradigm that reconstructs both appearance and motion information to explore temporal clues.
Motivated by the fact that human is able to recognize an action by tracking objects' position changes and shape changes, we propose to reconstruct a motion trajectory that represents these two kinds of change in the masked regions.
Pre-trained with our MME paradigm, the model is able to anticipate long-term and fine-grained motion details.
arXiv Detail & Related papers (2022-10-12T11:19:55Z) - Exploring Motion and Appearance Information for Temporal Sentence
Grounding [52.01687915910648]
We propose a Motion-Appearance Reasoning Network (MARN) to solve temporal sentence grounding.
We develop separate motion and appearance branches to learn motion-guided and appearance-guided object relations.
Our proposed MARN significantly outperforms previous state-of-the-art methods by a large margin.
arXiv Detail & Related papers (2022-01-03T02:44:18Z) - Hierarchical Deep Residual Reasoning for Temporal Moment Localization [48.108468456043994]
We propose a Hierarchical Deep Residual Reasoning (HDRR) model, which decomposes the video and sentence into multi-level representations with different semantics.
We also design the simple yet effective Res-BiGRUs for feature fusion, which is able to grasp the useful information in a self-adapting manner.
arXiv Detail & Related papers (2021-10-31T07:13:34Z) - HySTER: A Hybrid Spatio-Temporal Event Reasoner [75.41988728376081]
We present the HySTER: a Hybrid Spatio-Temporal Event Reasoner to reason over physical events in videos.
We define a method based on general temporal, causal and physics rules which can be transferred across tasks.
This work sets the foundations for the incorporation of inductive logic programming in the field of VideoQA.
arXiv Detail & Related papers (2021-01-17T11:07:17Z) - Visual Relation Grounding in Videos [86.06874453626347]
We explore a novel named visual Relation Grounding in Videos (RGV)
This task aims at providing supportive visual facts for other video-language tasks (e.g., video grounding and video question answering)
We tackle challenges by collaboratively optimizing two sequences of regions over a constructed hierarchical-temporal region.
Experimental results demonstrate our model can not only outperform baseline approaches significantly, but also produces visually meaningful facts.
arXiv Detail & Related papers (2020-07-17T08:20:39Z) - Knowing What, Where and When to Look: Efficient Video Action Modeling
with Attention [84.83632045374155]
Attentive video modeling is essential for action recognition in unconstrained videos.
What-Where-When (W3) video attention module models all three facets of video attention jointly.
Experiments show that our attention model brings significant improvements to existing action recognition models.
arXiv Detail & Related papers (2020-04-02T21:48:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.