SlimLM: An Efficient Small Language Model for On-Device Document Assistance
- URL: http://arxiv.org/abs/2411.09944v2
- Date: Fri, 22 Nov 2024 06:44:22 GMT
- Title: SlimLM: An Efficient Small Language Model for On-Device Document Assistance
- Authors: Thang M. Pham, Phat T. Nguyen, Seunghyun Yoon, Viet Dac Lai, Franck Dernoncourt, Trung Bui,
- Abstract summary: We present SlimLM, a series of SLMs optimized for document assistance tasks on mobile devices.
SlimLM is pre-trained on SlimPajama-627B and fine-tuned on DocAssist.
We evaluate SlimLM against existing SLMs, showing comparable or superior performance.
- Score: 60.971107009492606
- License:
- Abstract: While small language models (SLMs) show promises for mobile deployment, their real-world performance and applications on smartphones remains underexplored. We present SlimLM, a series of SLMs optimized for document assistance tasks on mobile devices. Through extensive experiments on a Samsung Galaxy S24, we identify the optimal trade-offs between model size (ranging from 125M to 7B parameters), context length, and inference time for efficient on-device processing. SlimLM is pre-trained on SlimPajama-627B and fine-tuned on DocAssist, our constructed dataset for summarization, question answering and suggestion tasks. Our smallest model demonstrates efficient performance on S24, while larger variants offer enhanced capabilities within mobile constraints. We evaluate SlimLM against existing SLMs, showing comparable or superior performance and offering a benchmark for future research in on-device language models. We also provide an Android application, offering practical insights into SLM deployment. Our findings provide valuable insights and illuminate the capabilities of running advanced language models on high-end smartphones, potentially reducing server costs and enhancing privacy through on-device processing.
Related papers
- PhoneLM:an Efficient and Capable Small Language Model Family through Principled Pre-training [6.827011856777674]
Existing small language models (SLM) for on-device deployment don't consider device hardware characteristics.
This work presents a simple yet effective principle for SLM design: architecture searching for (near-)optimal runtime efficiency before pre-training.
We develop PhoneLM family (currently with 0.5B and 1.5B versions), that acheive the state-of-the-art capability-efficiency tradeoff among those with similar parameter size.
arXiv Detail & Related papers (2024-11-07T02:19:00Z) - A Survey of Small Language Models [104.80308007044634]
Small Language Models (SLMs) have become increasingly important due to their efficiency and performance to perform various language tasks with minimal computational resources.
We present a comprehensive survey on SLMs, focusing on their architectures, training techniques, and model compression techniques.
arXiv Detail & Related papers (2024-10-25T23:52:28Z) - Mini-InternVL: A Flexible-Transfer Pocket Multimodal Model with 5% Parameters and 90% Performance [78.48606021719206]
Mini-InternVL is a series of MLLMs with parameters ranging from 1B to 4B, which achieves 90% of the performance with only 5% of the parameters.
We develop a unified adaptation framework for Mini-InternVL, which enables our models to transfer and outperform specialized models in downstream tasks.
arXiv Detail & Related papers (2024-10-21T17:58:20Z) - Large Language Model Performance Benchmarking on Mobile Platforms: A Thorough Evaluation [10.817783356090027]
Large language models (LLMs) increasingly integrate into every aspect of our work and daily lives.
There are growing concerns about user privacy, which push the trend toward local deployment of these models.
As a rapidly emerging application, we are concerned about their performance on commercial-off-the-shelf mobile devices.
arXiv Detail & Related papers (2024-10-04T17:14:59Z) - MobileAIBench: Benchmarking LLMs and LMMs for On-Device Use Cases [81.70591346986582]
We introduce MobileAIBench, a benchmarking framework for evaluating Large Language Models (LLMs) and Large Multimodal Models (LMMs) on mobile devices.
MobileAIBench assesses models across different sizes, quantization levels, and tasks, measuring latency and resource consumption on real devices.
arXiv Detail & Related papers (2024-06-12T22:58:12Z) - Self-Play Fine-Tuning Converts Weak Language Models to Strong Language Models [52.98743860365194]
We propose a new fine-tuning method called Self-Play fIne-tuNing (SPIN)
At the heart of SPIN lies a self-play mechanism, where the LLM refines its capability by playing against instances of itself.
This sheds light on the promise of self-play, enabling the achievement of human-level performance in LLMs without the need for expert opponents.
arXiv Detail & Related papers (2024-01-02T18:53:13Z) - MobileVLM : A Fast, Strong and Open Vision Language Assistant for Mobile
Devices [73.46317110474064]
MobileVLM is a competent multimodal vision language model (MMVLM) targeted to run on mobile devices.
It comprises a set of language models at the scale of 1.4B and 2.7B parameters, trained from scratch, a multimodal vision model that is pre-trained in the CLIP fashion.
arXiv Detail & Related papers (2023-12-28T08:21:24Z) - A Performance Evaluation of a Quantized Large Language Model on Various
Smartphones [0.0]
This paper explores the feasibility and performance of on-device large language model (LLM) inference on various Apple iPhone models.
Leveraging existing literature on running multi-billion parameter LLMs on resource-limited devices, our study examines the thermal effects and interaction speeds of a high-performing LLM.
We present real-world performance results, providing insights into on-device inference capabilities.
arXiv Detail & Related papers (2023-12-19T10:19:39Z) - Small Language Models Improve Giants by Rewriting Their Outputs [18.025736098795296]
We tackle the problem of leveraging training data to improve the performance of large language models (LLMs) without fine-tuning.
We create a pool of candidates from the LLM through few-shot prompting and we employ a compact model, the LM-corrector (LMCor), specifically trained to merge these candidates to produce an enhanced output.
Experiments on four natural language generation tasks demonstrate that even a small LMCor model (250M) substantially improves the few-shot performance of LLMs (62B), matching and even outperforming standard fine-tuning.
arXiv Detail & Related papers (2023-05-22T22:07:50Z) - LIDSNet: A Lightweight on-device Intent Detection model using Deep
Siamese Network [2.624902795082451]
LIDSNet is a novel lightweight on-device intent detection model.
We show that our model is at least 41x lighter and 30x faster during inference than MobileBERT on Samsung Galaxy S20 device.
arXiv Detail & Related papers (2021-10-06T18:20:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.