Fully Dynamic Adversarially Robust Correlation Clustering in Polylogarithmic Update Time
- URL: http://arxiv.org/abs/2411.09979v1
- Date: Fri, 15 Nov 2024 06:26:37 GMT
- Title: Fully Dynamic Adversarially Robust Correlation Clustering in Polylogarithmic Update Time
- Authors: Vladimir Braverman, Prathamesh Dharangutte, Shreyas Pai, Vihan Shah, Chen Wang,
- Abstract summary: We study the dynamic correlation clustering problem with $textitadaptive$ edge label flips.
In correlation clustering, we are given a $n$-vertex complete graph whose edges are labeled either $(+)$ or $(-)$.
We consider the dynamic setting with adversarial robustness, in which the $textitadaptive$ adversary could flip the label of an edge based on the current output of the algorithm.
- Score: 19.25942907402098
- License:
- Abstract: We study the dynamic correlation clustering problem with $\textit{adaptive}$ edge label flips. In correlation clustering, we are given a $n$-vertex complete graph whose edges are labeled either $(+)$ or $(-)$, and the goal is to minimize the total number of $(+)$ edges between clusters and the number of $(-)$ edges within clusters. We consider the dynamic setting with adversarial robustness, in which the $\textit{adaptive}$ adversary could flip the label of an edge based on the current output of the algorithm. Our main result is a randomized algorithm that always maintains an $O(1)$-approximation to the optimal correlation clustering with $O(\log^{2}{n})$ amortized update time. Prior to our work, no algorithm with $O(1)$-approximation and $\text{polylog}{(n)}$ update time for the adversarially robust setting was known. We further validate our theoretical results with experiments on synthetic and real-world datasets with competitive empirical performances. Our main technical ingredient is an algorithm that maintains $\textit{sparse-dense decomposition}$ with $\text{polylog}{(n)}$ update time, which could be of independent interest.
Related papers
- Dynamic Correlation Clustering in Sublinear Update Time [33.079608335361286]
We study the classic problem of correlation clustering in dynamic node streams.
In this setting, nodes are either added or randomly deleted over time, and each node pair is connected by a positive or negative edge.
We present an algorithm that maintains an $O(1)$-approximation with $O$(polylog $n$) amortized update time.
arXiv Detail & Related papers (2024-06-13T14:07:15Z) - Turnstile $\ell_p$ leverage score sampling with applications [56.403488578703865]
We develop a novel algorithm for sampling rows $a_i$ of a matrix $AinmathbbRntimes d$, proportional to their $ell_p$ norm, when $A$ is presented in a turnstile data stream.
Our algorithm not only returns the set of sampled row indexes, it also returns slightly perturbed rows $tildea_i approx a_i$, and approximates their sampling probabilities up to $varepsilon$ relative error.
For logistic regression, our framework yields the first algorithm that achieves a $
arXiv Detail & Related papers (2024-06-01T07:33:41Z) - Simple, Scalable and Effective Clustering via One-Dimensional
Projections [10.807367640692021]
Clustering is a fundamental problem in unsupervised machine learning with many applications in data analysis.
We introduce a simple randomized clustering algorithm that provably runs in expected time $O(mathrmnnz(X) + nlog n)$ for arbitrary $k$.
We prove that our algorithm achieves approximation ratio $smashwidetildeO(k4)$ on any input dataset for the $k$-means objective.
arXiv Detail & Related papers (2023-10-25T16:37:45Z) - Do you know what q-means? [50.045011844765185]
Clustering is one of the most important tools for analysis of large datasets.
We present an improved version of the "$q$-means" algorithm for clustering.
We also present a "dequantized" algorithm for $varepsilon which runs in $Obig(frack2varepsilon2(sqrtkd + log(Nd))big.
arXiv Detail & Related papers (2023-08-18T17:52:12Z) - Differentially Private Clustering in Data Streams [65.78882209673885]
We present a differentially private streaming clustering framework which only requires an offline DP coreset or clustering algorithm as a blackbox.
Our framework is also differentially private under the continual release setting, i.e., the union of outputs of our algorithms at every timestamp is always differentially private.
arXiv Detail & Related papers (2023-07-14T16:11:22Z) - Can We Find Nash Equilibria at a Linear Rate in Markov Games? [95.10091348976779]
We study decentralized learning in two-player zero-sum discounted Markov games.
The goal is to design a policy optimization algorithm for either agent satisfying two properties.
arXiv Detail & Related papers (2023-03-03T02:40:26Z) - Correlation Clustering Algorithm for Dynamic Complete Signed Graphs: An
Index-based Approach [9.13755431537592]
In this paper, we reduce the complexity of approximating the correlation clustering problem from $O(mtimesleft( 2+ alpha (G) right)+n)$ to $O(m+n)$ for any given value of $varepsilon$ for a complete signed graph.
Our approach gives the same output as the original algorithm and makes it possible to implement the algorithm in a full dynamic setting.
arXiv Detail & Related papers (2023-01-01T10:57:36Z) - Improved Learning-augmented Algorithms for k-means and k-medians
Clustering [8.04779839951237]
We consider the problem of clustering in the learning-augmented setting, where we are given a data set in $d$-dimensional Euclidean space.
We propose a deterministic $k$-means algorithm that produces centers with improved bound on clustering cost.
Our algorithm works even when the predictions are not very accurate, i.e. our bound holds for $alpha$ up to $1/2$, an improvement over $alpha$ being at most $1/7$ in the previous work.
arXiv Detail & Related papers (2022-10-31T03:00:11Z) - Sublinear Time and Space Algorithms for Correlation Clustering via
Sparse-Dense Decompositions [9.29659220237395]
We present a new approach for solving (minimum disagreement) correlation clustering.
We obtain sublinear algorithms with highly efficient time and space complexity.
The main ingredient of our approach is a novel connection to sparse-dense graph decompositions.
arXiv Detail & Related papers (2021-09-29T16:25:02Z) - Clustering Mixture Models in Almost-Linear Time via List-Decodable Mean
Estimation [58.24280149662003]
We study the problem of list-decodable mean estimation, where an adversary can corrupt a majority of the dataset.
We develop new algorithms for list-decodable mean estimation, achieving nearly-optimal statistical guarantees.
arXiv Detail & Related papers (2021-06-16T03:34:14Z) - List-Decodable Mean Estimation in Nearly-PCA Time [50.79691056481693]
We study the fundamental task of list-decodable mean estimation in high dimensions.
Our algorithm runs in time $widetildeO(ndk)$ for all $k = O(sqrtd) cup Omega(d)$, where $n$ is the size of the dataset.
A variant of our algorithm has runtime $widetildeO(ndk)$ for all $k$, at the expense of an $O(sqrtlog k)$ factor in the recovery guarantee
arXiv Detail & Related papers (2020-11-19T17:21:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.