EchoMimicV2: Towards Striking, Simplified, and Semi-Body Human Animation
- URL: http://arxiv.org/abs/2411.10061v1
- Date: Fri, 15 Nov 2024 09:23:18 GMT
- Title: EchoMimicV2: Towards Striking, Simplified, and Semi-Body Human Animation
- Authors: Rang Meng, Xingyu Zhang, Yuming Li, Chenguang Ma,
- Abstract summary: We propose a half-body human animation method, dubbed EchoMimicV2, to enhance half-body details, facial and gestural expressiveness, and reduce conditions redundancy.
We design the Phase-specific Denoising Loss to guide motion, detail, and low-level quality for animation in specific phases, respectively.
Extensive experiments and analyses demonstrate that EchoMimicV2 surpasses existing methods in both quantitative and qualitative evaluations.
- Score: 4.772507207388683
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent work on human animation usually involves audio, pose, or movement maps conditions, thereby achieves vivid animation quality. However, these methods often face practical challenges due to extra control conditions, cumbersome condition injection modules, or limitation to head region driving. Hence, we ask if it is possible to achieve striking half-body human animation while simplifying unnecessary conditions. To this end, we propose a half-body human animation method, dubbed EchoMimicV2, that leverages a novel Audio-Pose Dynamic Harmonization strategy, including Pose Sampling and Audio Diffusion, to enhance half-body details, facial and gestural expressiveness, and meanwhile reduce conditions redundancy. To compensate for the scarcity of half-body data, we utilize Head Partial Attention to seamlessly accommodate headshot data into our training framework, which can be omitted during inference, providing a free lunch for animation. Furthermore, we design the Phase-specific Denoising Loss to guide motion, detail, and low-level quality for animation in specific phases, respectively. Besides, we also present a novel benchmark for evaluating the effectiveness of half-body human animation. Extensive experiments and analyses demonstrate that EchoMimicV2 surpasses existing methods in both quantitative and qualitative evaluations.
Related papers
- EvAnimate: Event-conditioned Image-to-Video Generation for Human Animation [58.41979933166173]
EvAnimate is a framework that leverages event streams as motion cues to animate static human images.
We show that EvAnimate achieves high temporal fidelity and robust performance in scenarios where traditional video-derived cues fall short.
arXiv Detail & Related papers (2025-03-24T11:05:41Z) - Teller: Real-Time Streaming Audio-Driven Portrait Animation with Autoregressive Motion Generation [18.45773436423025]
We introduce the first autoregressive framework for real-time, audio-driven portrait animation, a.k.a, talking head.
We propose Teller, the first streaming audio-driven protrait animation framework with autoregressive motion generation.
arXiv Detail & Related papers (2025-03-24T08:16:47Z) - X-Dyna: Expressive Dynamic Human Image Animation [49.896933584815926]
X-Dyna is a zero-shot, diffusion-based pipeline for animating a single human image.
It generates realistic, context-aware dynamics for both the subject and the surrounding environment.
arXiv Detail & Related papers (2025-01-17T08:10:53Z) - GoHD: Gaze-oriented and Highly Disentangled Portrait Animation with Rhythmic Poses and Realistic Expression [33.886734972316326]
GoHD is a framework designed to produce highly realistic, expressive, and controllable portrait videos from any reference identity with any motion.
An animation module utilizing latent navigation is introduced to improve the generalization ability across unseen input styles.
A conformer-structured conditional diffusion model is designed to guarantee head poses that are aware of prosody.
A two-stage training strategy is devised to decouple frequent and frame-wise lip motion distillation from the generation of other more temporally dependent but less audio-related motions.
arXiv Detail & Related papers (2024-12-12T14:12:07Z) - AvatarGO: Zero-shot 4D Human-Object Interaction Generation and Animation [60.5897687447003]
AvatarGO is a novel framework designed to generate realistic 4D HOI scenes from textual inputs.
Our framework not only generates coherent compositional motions, but also exhibits greater robustness in handling issues.
As the first attempt to synthesize 4D avatars with object interactions, we hope AvatarGO could open new doors for human-centric 4D content creation.
arXiv Detail & Related papers (2024-10-09T17:58:56Z) - CyberHost: Taming Audio-driven Avatar Diffusion Model with Region Codebook Attention [15.841490425454344]
CyberHost is an end-to-end audio-driven human animation framework.
Region Codebook Attention mechanism improves the generation quality of facial and hand animations.
Human-prior-guided training strategies, including body movement map, hand clarity score, pose-aligned reference feature, and local enhancement supervision, improve synthesis results.
arXiv Detail & Related papers (2024-09-03T13:19:31Z) - Zero-shot High-fidelity and Pose-controllable Character Animation [89.74818983864832]
Image-to-video (I2V) generation aims to create a video sequence from a single image.
Existing approaches suffer from inconsistency of character appearances and poor preservation of fine details.
We propose PoseAnimate, a novel zero-shot I2V framework for character animation.
arXiv Detail & Related papers (2024-04-21T14:43:31Z) - 3DiFACE: Diffusion-based Speech-driven 3D Facial Animation and Editing [22.30870274645442]
We present 3DiFACE, a novel method for personalized speech-driven 3D facial animation and editing.
Our method outperforms existing state-of-the-art techniques and yields speech-driven animations with greater fidelity and diversity.
arXiv Detail & Related papers (2023-12-01T19:01:05Z) - MagicAnimate: Temporally Consistent Human Image Animation using
Diffusion Model [74.84435399451573]
This paper studies the human image animation task, which aims to generate a video of a certain reference identity following a particular motion sequence.
Existing animation works typically employ the frame-warping technique to animate the reference image towards the target motion.
We introduce MagicAnimate, a diffusion-based framework that aims at enhancing temporal consistency, preserving reference image faithfully, and improving animation fidelity.
arXiv Detail & Related papers (2023-11-27T18:32:31Z) - Pose-Controllable 3D Facial Animation Synthesis using Hierarchical
Audio-Vertex Attention [52.63080543011595]
A novel pose-controllable 3D facial animation synthesis method is proposed by utilizing hierarchical audio-vertex attention.
The proposed method can produce more realistic facial expressions and head posture movements.
arXiv Detail & Related papers (2023-02-24T09:36:31Z) - Live Speech Portraits: Real-Time Photorealistic Talking-Head Animation [12.552355581481999]
We first present a live system that generates personalized photorealistic talking-head animation only driven by audio signals at over 30 fps.
The first stage is a deep neural network that extracts deep audio features along with a manifold projection to project the features to the target person's speech space.
In the second stage, we learn facial dynamics and motions from the projected audio features.
In the final stage, we generate conditional feature maps from previous predictions and send them with a candidate image set to an image-to-image translation network to synthesize photorealistic renderings.
arXiv Detail & Related papers (2021-09-22T08:47:43Z) - MeshTalk: 3D Face Animation from Speech using Cross-Modality
Disentanglement [142.9900055577252]
We propose a generic audio-driven facial animation approach that achieves highly realistic motion synthesis results for the entire face.
Our approach ensures highly accurate lip motion, while also plausible animation of the parts of the face that are uncorrelated to the audio signal, such as eye blinks and eye brow motion.
arXiv Detail & Related papers (2021-04-16T17:05:40Z) - High-Fidelity Neural Human Motion Transfer from Monocular Video [71.75576402562247]
Video-based human motion transfer creates video animations of humans following a source motion.
We present a new framework which performs high-fidelity and temporally-consistent human motion transfer with natural pose-dependent non-rigid deformations.
In the experimental results, we significantly outperform the state-of-the-art in terms of video realism.
arXiv Detail & Related papers (2020-12-20T16:54:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.