Generative AI in Multimodal User Interfaces: Trends, Challenges, and Cross-Platform Adaptability
- URL: http://arxiv.org/abs/2411.10234v1
- Date: Fri, 15 Nov 2024 14:49:58 GMT
- Title: Generative AI in Multimodal User Interfaces: Trends, Challenges, and Cross-Platform Adaptability
- Authors: J. Bieniek, M. Rahouti, D. C. Verma,
- Abstract summary: Generative AI emerges as a key driver in reshaping user interfaces.
This paper explores the integration of generative AI in modern user interfaces.
It focuses on multimodal interaction, cross-platform adaptability and dynamic personalization.
- Score: 0.0
- License:
- Abstract: As the boundaries of human computer interaction expand, Generative AI emerges as a key driver in reshaping user interfaces, introducing new possibilities for personalized, multimodal and cross-platform interactions. This integration reflects a growing demand for more adaptive and intuitive user interfaces that can accommodate diverse input types such as text, voice and video, and deliver seamless experiences across devices. This paper explores the integration of generative AI in modern user interfaces, examining historical developments and focusing on multimodal interaction, cross-platform adaptability and dynamic personalization. A central theme is the interface dilemma, which addresses the challenge of designing effective interactions for multimodal large language models, assessing the trade-offs between graphical, voice-based and immersive interfaces. The paper further evaluates lightweight frameworks tailored for mobile platforms, spotlighting the role of mobile hardware in enabling scalable multimodal AI. Technical and ethical challenges, including context retention, privacy concerns and balancing cloud and on-device processing are thoroughly examined. Finally, the paper outlines future directions such as emotionally adaptive interfaces, predictive AI driven user interfaces and real-time collaborative systems, underscoring generative AI's potential to redefine adaptive user-centric interfaces across platforms.
Related papers
- Survey of User Interface Design and Interaction Techniques in Generative AI Applications [79.55963742878684]
We aim to create a compendium of different user-interaction patterns that can be used as a reference for designers and developers alike.
We also strive to lower the entry barrier for those attempting to learn more about the design of generative AI applications.
arXiv Detail & Related papers (2024-10-28T23:10:06Z) - Constraining Participation: Affordances of Feedback Features in Interfaces to Large Language Models [49.74265453289855]
Large language models (LLMs) are now accessible to anyone with a computer, a web browser, and an internet connection via browser-based interfaces.
This paper examines the affordances of interactive feedback features in ChatGPT's interface, analysing how they shape user input and participation in iteration.
arXiv Detail & Related papers (2024-08-27T13:50:37Z) - DeepInteraction++: Multi-Modality Interaction for Autonomous Driving [80.8837864849534]
We introduce a novel modality interaction strategy that allows individual per-modality representations to be learned and maintained throughout.
DeepInteraction++ is a multi-modal interaction framework characterized by a multi-modal representational interaction encoder and a multi-modal predictive interaction decoder.
Experiments demonstrate the superior performance of the proposed framework on both 3D object detection and end-to-end autonomous driving tasks.
arXiv Detail & Related papers (2024-08-09T14:04:21Z) - V-Zen: Efficient GUI Understanding and Precise Grounding With A Novel Multimodal LLM [0.0]
This paper presents V-Zen, an innovative Multimodal Large Language Model (MLLM) meticulously crafted to revolutionise the domain of GUI understanding and grounding.
V-Zen establishes new benchmarks in efficient grounding and next-action prediction, thereby laying the groundwork for self-operating computer systems.
The successful integration of V-Zen and GUIDE marks the dawn of a new era in multimodal AI research, opening the door to intelligent, autonomous computing experiences.
arXiv Detail & Related papers (2024-05-24T08:21:45Z) - LVLM-Interpret: An Interpretability Tool for Large Vision-Language Models [50.259006481656094]
We present a novel interactive application aimed towards understanding the internal mechanisms of large vision-language models.
Our interface is designed to enhance the interpretability of the image patches, which are instrumental in generating an answer.
We present a case study of how our application can aid in understanding failure mechanisms in a popular large multi-modal model: LLaVA.
arXiv Detail & Related papers (2024-04-03T23:57:34Z) - Agent AI: Surveying the Horizons of Multimodal Interaction [83.18367129924997]
"Agent AI" is a class of interactive systems that can perceive visual stimuli, language inputs, and other environmentally-grounded data.
We envision a future where people can easily create any virtual reality or simulated scene and interact with agents embodied within the virtual environment.
arXiv Detail & Related papers (2024-01-07T19:11:18Z) - Prompt-to-OS (P2OS): Revolutionizing Operating Systems and
Human-Computer Interaction with Integrated AI Generative Models [10.892991111926573]
We present a paradigm for human-computer interaction that revolutionizes the traditional notion of an operating system.
Within this innovative framework, user requests issued to the machine are handled by an interconnected ecosystem of generative AI models.
This visionary concept raises significant challenges, including privacy, security, trustability, and the ethical use of generative models.
arXiv Detail & Related papers (2023-10-07T17:16:34Z) - Large Language Models Empowered Autonomous Edge AI for Connected
Intelligence [51.269276328087855]
Edge artificial intelligence (Edge AI) is a promising solution to achieve connected intelligence.
This article presents a vision of autonomous edge AI systems that automatically organize, adapt, and optimize themselves to meet users' diverse requirements.
arXiv Detail & Related papers (2023-07-06T05:16:55Z) - Adaptive User-Centered Multimodal Interaction towards Reliable and
Trusted Automotive Interfaces [0.0]
Hand gestures, head pose, eye gaze, and speech have been investigated in automotive applications for object selection and referencing.
I propose a user-centered adaptive multimodal fusion approach for referencing external objects from a moving vehicle.
arXiv Detail & Related papers (2022-11-07T13:31:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.