Mitigating Parameter Degeneracy using Joint Conditional Diffusion Model for WECC Composite Load Model in Power Systems
- URL: http://arxiv.org/abs/2411.10431v1
- Date: Fri, 15 Nov 2024 18:53:08 GMT
- Title: Mitigating Parameter Degeneracy using Joint Conditional Diffusion Model for WECC Composite Load Model in Power Systems
- Authors: Feiqin Zhu, Dmitrii Torbunov, Yihui Ren, Zhongjing Jiang, Tianqiao Zhao, Amirthagunaraj Yogarathnam, Meng Yue,
- Abstract summary: We develop a joint conditional diffusion model-based inverse problem solver (JCDI)
JCDI incorporates a joint conditioning architecture with simultaneous inputs of multi-event observations to improve parameter generalizability.
Simulation studies on the WECC CLM show that the proposed JCDI effectively reduces uncertainties of degenerate parameters.
- Score: 2.7212274374272543
- License:
- Abstract: Data-driven modeling for dynamic systems has gained widespread attention in recent years. Its inverse formulation, parameter estimation, aims to infer the inherent model parameters from observations. However, parameter degeneracy, where different combinations of parameters yield the same observable output, poses a critical barrier to accurately and uniquely identifying model parameters. In the context of WECC composite load model (CLM) in power systems, utility practitioners have observed that CLM parameters carefully selected for one fault event may not perform satisfactorily in another fault. Here, we innovate a joint conditional diffusion model-based inverse problem solver (JCDI), that incorporates a joint conditioning architecture with simultaneous inputs of multi-event observations to improve parameter generalizability. Simulation studies on the WECC CLM show that the proposed JCDI effectively reduces uncertainties of degenerate parameters, thus the parameter estimation error is decreased by 42.1% compared to a single-event learning scheme. This enables the model to achieve high accuracy in predicting power trajectories under different fault events, including electronic load tripping and motor stalling, outperforming standard deep reinforcement learning and supervised learning approaches. We anticipate this work will contribute to mitigating parameter degeneracy in system dynamics, providing a general parameter estimation framework across various scientific domains.
Related papers
- SMILE: Zero-Shot Sparse Mixture of Low-Rank Experts Construction From Pre-Trained Foundation Models [85.67096251281191]
We present an innovative approach to model fusion called zero-shot Sparse MIxture of Low-rank Experts (SMILE) construction.
SMILE allows for the upscaling of source models into an MoE model without extra data or further training.
We conduct extensive experiments across diverse scenarios, such as image classification and text generation tasks, using full fine-tuning and LoRA fine-tuning.
arXiv Detail & Related papers (2024-08-19T17:32:15Z) - Activated Parameter Locating via Causal Intervention for Model Merging [26.98015572633289]
Model merging combines multiple models into one model, achieving convincing generalization without the necessity of additional training.
Existing models have demonstrated that dropping a portion of delta parameters can alleviate conflicts while maintaining performance.
We propose an Activated Locating (APL) method that utilizes causal intervention to estimate importance, enabling more precise parameter drops and better conflict mitigation.
arXiv Detail & Related papers (2024-08-18T14:00:00Z) - Scaling Exponents Across Parameterizations and Optimizers [94.54718325264218]
We propose a new perspective on parameterization by investigating a key assumption in prior work.
Our empirical investigation includes tens of thousands of models trained with all combinations of threes.
We find that the best learning rate scaling prescription would often have been excluded by the assumptions in prior work.
arXiv Detail & Related papers (2024-07-08T12:32:51Z) - Parameter Efficient Fine-tuning via Cross Block Orchestration for Segment Anything Model [81.55141188169621]
We equip PEFT with a cross-block orchestration mechanism to enable the adaptation of the Segment Anything Model (SAM) to various downstream scenarios.
We propose an intra-block enhancement module, which introduces a linear projection head whose weights are generated from a hyper-complex layer.
Our proposed approach consistently improves the segmentation performance significantly on novel scenarios with only around 1K additional parameters.
arXiv Detail & Related papers (2023-11-28T11:23:34Z) - Boosting Inference Efficiency: Unleashing the Power of Parameter-Shared
Pre-trained Language Models [109.06052781040916]
We introduce a technique to enhance the inference efficiency of parameter-shared language models.
We also propose a simple pre-training technique that leads to fully or partially shared models.
Results demonstrate the effectiveness of our methods on both autoregressive and autoencoding PLMs.
arXiv Detail & Related papers (2023-10-19T15:13:58Z) - Active-Learning-Driven Surrogate Modeling for Efficient Simulation of
Parametric Nonlinear Systems [0.0]
In absence of governing equations, we need to construct the parametric reduced-order surrogate model in a non-intrusive fashion.
Our work provides a non-intrusive optimality criterion to efficiently populate the parameter snapshots.
We propose an active-learning-driven surrogate model using kernel-based shallow neural networks.
arXiv Detail & Related papers (2023-06-09T18:01:14Z) - Reduced order modeling of parametrized systems through autoencoders and
SINDy approach: continuation of periodic solutions [0.0]
This work presents a data-driven, non-intrusive framework which combines ROM construction with reduced dynamics identification.
The proposed approach leverages autoencoder neural networks with parametric sparse identification of nonlinear dynamics (SINDy) to construct a low-dimensional dynamical model.
These aim at tracking the evolution of periodic steady-state responses as functions of system parameters, avoiding the computation of the transient phase, and allowing to detect instabilities and bifurcations.
arXiv Detail & Related papers (2022-11-13T01:57:18Z) - On the Influence of Enforcing Model Identifiability on Learning dynamics
of Gaussian Mixture Models [14.759688428864159]
We propose a technique for extracting submodels from singular models.
Our method enforces model identifiability during training.
We show how the method can be applied to more complex models like deep neural networks.
arXiv Detail & Related papers (2022-06-17T07:50:22Z) - On the Parameter Combinations That Matter and on Those That do Not [0.0]
We present a data-driven approach to characterizing nonidentifiability of a model's parameters.
By employing Diffusion Maps and their extensions, we discover the minimal combinations of parameters required to characterize the dynamic output behavior.
arXiv Detail & Related papers (2021-10-13T13:46:23Z) - Understanding Overparameterization in Generative Adversarial Networks [56.57403335510056]
Generative Adversarial Networks (GANs) are used to train non- concave mini-max optimization problems.
A theory has shown the importance of the gradient descent (GD) to globally optimal solutions.
We show that in an overized GAN with a $1$-layer neural network generator and a linear discriminator, the GDA converges to a global saddle point of the underlying non- concave min-max problem.
arXiv Detail & Related papers (2021-04-12T16:23:37Z) - On the Sparsity of Neural Machine Translation Models [65.49762428553345]
We investigate whether redundant parameters can be reused to achieve better performance.
Experiments and analyses are systematically conducted on different datasets and NMT architectures.
arXiv Detail & Related papers (2020-10-06T11:47:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.