FitDiT: Advancing the Authentic Garment Details for High-fidelity Virtual Try-on
- URL: http://arxiv.org/abs/2411.10499v2
- Date: Fri, 22 Nov 2024 08:19:48 GMT
- Title: FitDiT: Advancing the Authentic Garment Details for High-fidelity Virtual Try-on
- Authors: Boyuan Jiang, Xiaobin Hu, Donghao Luo, Qingdong He, Chengming Xu, Jinlong Peng, Jiangning Zhang, Chengjie Wang, Yunsheng Wu, Yanwei Fu,
- Abstract summary: Garment perception enhancement technique, FitDiT, is designed for high-fidelity virtual try-on using Diffusion Transformers (DiT)
We introduce a garment texture extractor that incorporates garment priors evolution to fine-tune garment feature, facilitating to better capture rich details such as stripes, patterns, and text.
We also employ a dilated-relaxed mask strategy that adapts to the correct length of garments, preventing the generation of garments that fill the entire mask area during cross-category try-on.
- Score: 73.13242624924814
- License:
- Abstract: Although image-based virtual try-on has made considerable progress, emerging approaches still encounter challenges in producing high-fidelity and robust fitting images across diverse scenarios. These methods often struggle with issues such as texture-aware maintenance and size-aware fitting, which hinder their overall effectiveness. To address these limitations, we propose a novel garment perception enhancement technique, termed FitDiT, designed for high-fidelity virtual try-on using Diffusion Transformers (DiT) allocating more parameters and attention to high-resolution features. First, to further improve texture-aware maintenance, we introduce a garment texture extractor that incorporates garment priors evolution to fine-tune garment feature, facilitating to better capture rich details such as stripes, patterns, and text. Additionally, we introduce frequency-domain learning by customizing a frequency distance loss to enhance high-frequency garment details. To tackle the size-aware fitting issue, we employ a dilated-relaxed mask strategy that adapts to the correct length of garments, preventing the generation of garments that fill the entire mask area during cross-category try-on. Equipped with the above design, FitDiT surpasses all baselines in both qualitative and quantitative evaluations. It excels in producing well-fitting garments with photorealistic and intricate details, while also achieving competitive inference times of 4.57 seconds for a single 1024x768 image after DiT structure slimming, outperforming existing methods.
Related papers
- Improving Virtual Try-On with Garment-focused Diffusion Models [91.95830983115474]
Diffusion models have led to the revolutionizing of generative modeling in numerous image synthesis tasks.
We shape a new Diffusion model, namely GarDiff, which triggers the garment-focused diffusion process.
Experiments on VITON-HD and DressCode datasets demonstrate the superiority of our GarDiff when compared to state-of-the-art VTON approaches.
arXiv Detail & Related papers (2024-09-12T17:55:11Z) - IMAGDressing-v1: Customizable Virtual Dressing [58.44155202253754]
IMAGDressing-v1 is a virtual dressing task that generates freely editable human images with fixed garments and optional conditions.
IMAGDressing-v1 incorporates a garment UNet that captures semantic features from CLIP and texture features from VAE.
We present a hybrid attention module, including a frozen self-attention and a trainable cross-attention, to integrate garment features from the garment UNet into a frozen denoising UNet.
arXiv Detail & Related papers (2024-07-17T16:26:30Z) - GraVITON: Graph based garment warping with attention guided inversion for Virtual-tryon [5.790630195329777]
We introduce a novel graph based warping technique which emphasizes the value of context in garment flow.
Our method, validated on VITON-HD and Dresscode datasets, showcases substantial improvement in garment warping, texture preservation, and overall realism.
arXiv Detail & Related papers (2024-06-04T10:29:18Z) - AnyFit: Controllable Virtual Try-on for Any Combination of Attire Across Any Scenario [50.62711489896909]
AnyFit surpasses all baselines on high-resolution benchmarks and real-world data by a large gap.
AnyFit's impressive performance on high-fidelity virtual try-ons in any scenario from any image, paves a new path for future research within the fashion community.
arXiv Detail & Related papers (2024-05-28T13:33:08Z) - TryOn-Adapter: Efficient Fine-Grained Clothing Identity Adaptation for High-Fidelity Virtual Try-On [34.51850518458418]
Virtual try-on focuses on adjusting the given clothes to fit a specific person seamlessly while avoiding any distortion of the patterns and textures of the garment.
We propose an effective and efficient framework, termed TryOn-Adapter.
arXiv Detail & Related papers (2024-04-01T03:15:41Z) - Improving Diffusion Models for Authentic Virtual Try-on in the Wild [53.96244595495942]
This paper considers image-based virtual try-on, which renders an image of a person wearing a curated garment.
We propose a novel diffusion model that improves garment fidelity and generates authentic virtual try-on images.
We present a customization method using a pair of person-garment images, which significantly improves fidelity and authenticity.
arXiv Detail & Related papers (2024-03-08T08:12:18Z) - Towards Scalable Unpaired Virtual Try-On via Patch-Routed
Spatially-Adaptive GAN [66.3650689395967]
We propose a texture-preserving end-to-end network, the PAtch-routed SpaTially-Adaptive GAN (PASTA-GAN), that facilitates real-world unpaired virtual try-on.
To disentangle the style and spatial information of each garment, PASTA-GAN consists of an innovative patch-routed disentanglement module.
arXiv Detail & Related papers (2021-11-20T08:36:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.