Everything is a Video: Unifying Modalities through Next-Frame Prediction
- URL: http://arxiv.org/abs/2411.10503v1
- Date: Fri, 15 Nov 2024 12:59:37 GMT
- Title: Everything is a Video: Unifying Modalities through Next-Frame Prediction
- Authors: G. Thomas Hudson, Dean Slack, Thomas Winterbottom, Jamie Sterling, Chenghao Xiao, Junjie Shentu, Noura Al Moubayed,
- Abstract summary: We introduce a novel framework that extends the concept of task reformulation beyond natural language processing (NLP) to multimodal learning.
We propose to reformulate diverse multimodal tasks into a unified next-frame prediction problem, allowing a single model to handle different modalities without modality-specific components.
Our approach is evaluated on a range of tasks, including text-to-text, image-to-text, video-to-video, video-to-text, and audio-to-text.
- Score: 5.720266474212221
- License:
- Abstract: Multimodal learning, which involves integrating information from various modalities such as text, images, audio, and video, is pivotal for numerous complex tasks like visual question answering, cross-modal retrieval, and caption generation. Traditional approaches rely on modality-specific encoders and late fusion techniques, which can hinder scalability and flexibility when adapting to new tasks or modalities. To address these limitations, we introduce a novel framework that extends the concept of task reformulation beyond natural language processing (NLP) to multimodal learning. We propose to reformulate diverse multimodal tasks into a unified next-frame prediction problem, allowing a single model to handle different modalities without modality-specific components. This method treats all inputs and outputs as sequential frames in a video, enabling seamless integration of modalities and effective knowledge transfer across tasks. Our approach is evaluated on a range of tasks, including text-to-text, image-to-text, video-to-video, video-to-text, and audio-to-text, demonstrating the model's ability to generalize across modalities with minimal adaptation. We show that task reformulation can significantly simplify multimodal model design across various tasks, laying the groundwork for more generalized multimodal foundation models.
Related papers
- Realizing Video Summarization from the Path of Language-based Semantic Understanding [19.825666473712197]
We propose a novel video summarization framework inspired by the Mixture of Experts (MoE) paradigm.
Our approach integrates multiple VideoLLMs to generate comprehensive and coherent textual summaries.
arXiv Detail & Related papers (2024-10-06T15:03:22Z) - VIMI: Grounding Video Generation through Multi-modal Instruction [89.90065445082442]
Existing text-to-video diffusion models rely solely on text-only encoders for their pretraining.
We construct a large-scale multimodal prompt dataset by employing retrieval methods to pair in-context examples with the given text prompts.
We finetune the model from the first stage on three video generation tasks, incorporating multi-modal instructions.
arXiv Detail & Related papers (2024-07-08T18:12:49Z) - Unified Multi-modal Unsupervised Representation Learning for
Skeleton-based Action Understanding [62.70450216120704]
Unsupervised pre-training has shown great success in skeleton-based action understanding.
We propose a Unified Multimodal Unsupervised Representation Learning framework, called UmURL.
UmURL exploits an efficient early-fusion strategy to jointly encode the multi-modal features in a single-stream manner.
arXiv Detail & Related papers (2023-11-06T13:56:57Z) - MaMMUT: A Simple Architecture for Joint Learning for MultiModal Tasks [59.09343552273045]
We propose a decoder-only model for multimodal tasks, which is surprisingly effective in jointly learning of these disparate vision-language tasks.
We demonstrate that joint learning of these diverse objectives is simple, effective, and maximizes the weight-sharing of the model across these tasks.
Our model achieves the state of the art on image-text and text-image retrieval, video question answering and open-vocabulary detection tasks, outperforming much larger and more extensively trained foundational models.
arXiv Detail & Related papers (2023-03-29T16:42:30Z) - MuLTI: Efficient Video-and-Language Understanding with Text-Guided
MultiWay-Sampler and Multiple Choice Modeling [7.737755720567113]
This paper proposes MuLTI, a highly accurate and efficient video-and-language understanding model.
We design a Text-Guided MultiWay-Sampler based on adapt-pooling residual mapping and self-attention modules.
We also propose a new pretraining task named Multiple Choice Modeling.
arXiv Detail & Related papers (2023-03-10T05:22:39Z) - mPLUG-2: A Modularized Multi-modal Foundation Model Across Text, Image
and Video [89.19867891570945]
mPLUG-2 is a new unified paradigm with modularized design for multi-modal pretraining.
It shares common universal modules for modality collaboration and disentangling different modality modules to deal with modality entanglement.
It is flexible to select different modules for different understanding and generation tasks across all modalities including text, image, and video.
arXiv Detail & Related papers (2023-02-01T12:40:03Z) - i-Code: An Integrative and Composable Multimodal Learning Framework [99.56065789066027]
i-Code is a self-supervised pretraining framework where users may flexibly combine the modalities of vision, speech, and language into unified and general-purpose vector representations.
The entire system is pretrained end-to-end with new objectives including masked modality unit modeling and cross-modality contrastive learning.
Experimental results demonstrate how i-Code can outperform state-of-the-art techniques on five video understanding tasks and the GLUE NLP benchmark, improving by as much as 11%.
arXiv Detail & Related papers (2022-05-03T23:38:50Z) - VX2TEXT: End-to-End Learning of Video-Based Text Generation From
Multimodal Inputs [103.99315770490163]
We present a framework for text generation from multimodal inputs consisting of video plus text, speech, or audio.
Experiments demonstrate that our approach based on a single architecture outperforms the state-of-the-art on three video-based text-generation tasks.
arXiv Detail & Related papers (2021-01-28T15:22:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.