Does Prompt Formatting Have Any Impact on LLM Performance?
- URL: http://arxiv.org/abs/2411.10541v1
- Date: Fri, 15 Nov 2024 19:26:38 GMT
- Title: Does Prompt Formatting Have Any Impact on LLM Performance?
- Authors: Jia He, Mukund Rungta, David Koleczek, Arshdeep Sekhon, Franklin X Wang, Sadid Hasan,
- Abstract summary: This paper examines the impact of different prompt templates on Large Language Models (LLMs) performance.
We evaluated their impact across tasks like natural language reasoning, code generation, and translation using OpenAI's GPT models.
Experiments show that GPT-3.5-turbo's performance varies by up to 40% in a code translation task depending on the prompt template, while larger models like GPT-4 are more robust to these variations.
- Score: 10.869929764785464
- License:
- Abstract: In the realm of Large Language Models (LLMs), prompt optimization is crucial for model performance. Although previous research has explored aspects like rephrasing prompt contexts, using various prompting techniques (like in-context learning and chain-of-thought), and ordering few-shot examples, our understanding of LLM sensitivity to prompt templates remains limited. Therefore, this paper examines the impact of different prompt templates on LLM performance. We formatted the same contexts into various human-readable templates, including plain text, Markdown, JSON, and YAML, and evaluated their impact across tasks like natural language reasoning, code generation, and translation using OpenAI's GPT models. Experiments show that GPT-3.5-turbo's performance varies by up to 40\% in a code translation task depending on the prompt template, while larger models like GPT-4 are more robust to these variations. Our analysis highlights the need to reconsider the use of fixed prompt templates, as different formats can significantly affect model performance.
Related papers
- Optimising Hard Prompts with Few-Shot Meta-Prompting [0.0]
Contextual prompts include context in the form of a document or dialogue along with the natural language instructions to the Large Language Model (LLM)
Masking the context, it acts as template for prompts.
In this paper, we present an iterative method to generate better templates using an LLM from an existing set of prompt templates without revealing the context to the LLM.
arXiv Detail & Related papers (2024-07-09T07:02:57Z) - CODIS: Benchmarking Context-Dependent Visual Comprehension for Multimodal Large Language Models [58.95889895912716]
We introduce a new benchmark, named as CODIS, designed to assess the ability of models to use context provided in free-form text to enhance visual comprehension.
Our findings indicate that MLLMs consistently fall short of human performance on this benchmark.
This underscores the pressing need to enhance the ability of MLLMs to comprehend visuals in a context-dependent manner.
arXiv Detail & Related papers (2024-02-21T08:21:12Z) - Mind Your Format: Towards Consistent Evaluation of In-Context Learning Improvements [10.687101698324897]
Large language models demonstrate a remarkable capability for learning to solve new tasks from a few examples.
The prompt template, or the way the input examples are formatted to obtain the prompt, is an important yet often overlooked aspect of in-context learning.
We show that a poor choice of the template can reduce the performance of the strongest models and inference methods to a random guess level.
arXiv Detail & Related papers (2024-01-12T18:58:26Z) - Adapting Large Language Models for Document-Level Machine Translation [46.370862171452444]
Large language models (LLMs) have significantly advanced various natural language processing (NLP) tasks.
Recent research indicates that moderately-sized LLMs often outperform larger ones after task-specific fine-tuning.
This study focuses on adapting LLMs for document-level machine translation (DocMT) for specific language pairs.
arXiv Detail & Related papers (2024-01-12T09:29:13Z) - Quantifying Language Models' Sensitivity to Spurious Features in Prompt Design or: How I learned to start worrying about prompt formatting [68.19544657508509]
Large language models (LLMs) are adopted as a fundamental component of language technologies.
We find that several widely used open-source LLMs are extremely sensitive to subtle changes in prompt format in few-shot settings.
We propose an algorithm that rapidly evaluates a sampled set of plausible prompt formats for a given task, and reports the interval of expected performance without accessing model weights.
arXiv Detail & Related papers (2023-10-17T15:03:30Z) - TIM: Teaching Large Language Models to Translate with Comparison [78.66926087162672]
We propose a novel framework using examples in comparison to teach LLMs to learn translation.
Our approach involves presenting the model with examples of correct and incorrect translations and using a preference loss to guide the model's learning.
Our findings offer a new perspective on fine-tuning LLMs for translation tasks and provide a promising solution for generating high-quality translations.
arXiv Detail & Related papers (2023-07-10T08:15:40Z) - Document-Level Machine Translation with Large Language Models [91.03359121149595]
Large language models (LLMs) can produce coherent, cohesive, relevant, and fluent answers for various natural language processing (NLP) tasks.
This paper provides an in-depth evaluation of LLMs' ability on discourse modeling.
arXiv Detail & Related papers (2023-04-05T03:49:06Z) - Guiding Large Language Models via Directional Stimulus Prompting [114.84930073977672]
We introduce Directional Stimulus Prompting, a novel framework for guiding black-box large language models (LLMs) toward specific desired outputs.
Instead of directly adjusting LLMs, our method employs a small tunable policy model to generate an auxiliary directional stimulus prompt for each input instance.
arXiv Detail & Related papers (2023-02-22T17:44:15Z) - Reframing Instructional Prompts to GPTk's Language [72.69833640335519]
We propose reframing techniques for model designers to create effective prompts for language models.
Our results show that reframing improves few-shot learning performance by 14% while reducing sample complexity.
The performance gains are particularly important on large language models, such as GPT3 where tuning models or prompts on large datasets is not feasible.
arXiv Detail & Related papers (2021-09-16T09:44:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.