SoftLMs: Efficient Adaptive Low-Rank Approximation of Language Models using Soft-Thresholding Mechanism
- URL: http://arxiv.org/abs/2411.10543v1
- Date: Fri, 15 Nov 2024 19:29:51 GMT
- Title: SoftLMs: Efficient Adaptive Low-Rank Approximation of Language Models using Soft-Thresholding Mechanism
- Authors: Priyansh Bhatnagar, Linfeng Wen, Mingu Kang,
- Abstract summary: We propose a novel compression methodology that dynamically determines the rank of each layer using a soft thresholding mechanism.
We have successfully applied the proposed technique to attention-based architectures, including BERT for discriminative tasks and GPT2 and TinyLlama for generative tasks.
Our experiments demonstrate that the proposed technique achieves a speed-up of 1.33X to 1.72X in the encoder/ decoder with a 50% reduction in total parameters.
- Score: 1.7170348600689374
- License:
- Abstract: Extensive efforts have been made to boost the performance in the domain of language models by introducing various attention-based transformers. However, the inclusion of linear layers with large dimensions contributes to significant computational and memory overheads. The escalating computational demands of these models necessitate the development of various compression techniques to ensure their deployment on devices, particularly in resource-constrained environments. In this paper, we propose a novel compression methodology that dynamically determines the rank of each layer using a soft thresholding mechanism, which clips the singular values with a small magnitude in a differentiable form. This approach automates the decision-making process to identify the optimal degree of compression for each layer. We have successfully applied the proposed technique to attention-based architectures, including BERT for discriminative tasks and GPT2 and TinyLlama for generative tasks. Additionally, we have validated our method on Mamba, a recently proposed state-space model. Our experiments demonstrate that the proposed technique achieves a speed-up of 1.33X to 1.72X in the encoder/ decoder with a 50% reduction in total parameters.
Related papers
- Pushing the Limits of Large Language Model Quantization via the Linearity Theorem [71.3332971315821]
We present a "line theoremarity" establishing a direct relationship between the layer-wise $ell$ reconstruction error and the model perplexity increase due to quantization.
This insight enables two novel applications: (1) a simple data-free LLM quantization method using Hadamard rotations and MSE-optimal grids, dubbed HIGGS, and (2) an optimal solution to the problem of finding non-uniform per-layer quantization levels.
arXiv Detail & Related papers (2024-11-26T15:35:44Z) - SpaLLM: Unified Compressive Adaptation of Large Language Models with Sketching [32.4599581528901]
"Two-tower" architecture is used for compressing pre-trained LLM parameters into compact representations and fine-tuning the additive full-precision adapter.
We propose SpaLLM (Sketched Adapting of LLMs), a novel compressive adaptation approach for LLMs.
We show that SpaLLM sketches pre-trained LLM weights into lookup tables and directly fine-tunes the values in these tables.
arXiv Detail & Related papers (2024-10-08T20:58:24Z) - Language Models as Zero-shot Lossless Gradient Compressors: Towards
General Neural Parameter Prior Models [66.1595537904019]
Large language models (LLMs) can act as gradient priors in a zero-shot setting.
We introduce LM-GC, a novel method that integrates LLMs with arithmetic coding.
arXiv Detail & Related papers (2024-09-26T13:38:33Z) - Contemporary Model Compression on Large Language Models Inference [7.307436175842646]
Large Language Models (LLMs) have revolutionized natural language processing by achieving state-of-the-art results across a variety of tasks.
The computational demands of LLM inference, including high memory consumption and slow processing speeds, pose significant challenges for real-world applications.
This survey explores techniques in model compression that address these challenges by reducing the size and computational requirements of LLMs.
arXiv Detail & Related papers (2024-09-03T15:35:01Z) - Data-freeWeight Compress and Denoise for Large Language Models [101.53420111286952]
We propose a novel approach termed Data-free Joint Rank-k Approximation for compressing the parameter matrices.
We achieve a model pruning of 80% parameters while retaining 93.43% of the original performance without any calibration data.
arXiv Detail & Related papers (2024-02-26T05:51:47Z) - Revisiting Offline Compression: Going Beyond Factorization-based Methods
for Transformer Language Models [7.542276054279341]
transformer language models achieve outstanding results in many natural language processing (NLP) tasks.
Their enormous size often makes them impractical on memory-constrained devices, requiring practitioners to compress them to smaller networks.
In this paper, we explore offline compression methods, meaning computationally-cheap approaches that do not require further fine-tuning of the compressed model.
arXiv Detail & Related papers (2023-02-08T13:36:06Z) - AlphaTuning: Quantization-Aware Parameter-Efficient Adaptation of
Large-Scale Pre-Trained Language Models [19.640997611256168]
We propose AlphaTuning, consisting of post-training quantization of the pre-trained language model and fine-tuning only some parts of quantized parameters for a target task.
Specifically, AlphaTuning works by employing binary-coding quantization, which factorizes the full-precision parameters into binary parameters and a separate set of scaling factors.
We demonstrate that AlphaTuning, when applied to GPT-2 and OPT, performs competitively with full fine-tuning on a variety of downstream tasks while achieving >10x compression ratio under 4-bit quantization and >1,000x reduction in the number of trainable parameters.
arXiv Detail & Related papers (2022-10-08T00:36:00Z) - Compression of Generative Pre-trained Language Models via Quantization [62.80110048377957]
We find that previous quantization methods fail on generative tasks due to the textithomogeneous word embeddings
We propose a token-level contrastive distillation to learn distinguishable word embeddings, and a module-wise dynamic scaling to make quantizers adaptive to different modules.
arXiv Detail & Related papers (2022-03-21T02:11:35Z) - Automatic Mixed-Precision Quantization Search of BERT [62.65905462141319]
Pre-trained language models such as BERT have shown remarkable effectiveness in various natural language processing tasks.
These models usually contain millions of parameters, which prevents them from practical deployment on resource-constrained devices.
We propose an automatic mixed-precision quantization framework designed for BERT that can simultaneously conduct quantization and pruning in a subgroup-wise level.
arXiv Detail & Related papers (2021-12-30T06:32:47Z) - You Only Compress Once: Towards Effective and Elastic BERT Compression
via Exploit-Explore Stochastic Nature Gradient [88.58536093633167]
Existing model compression approaches require re-compression or fine-tuning across diverse constraints to accommodate various hardware deployments.
We propose a novel approach, YOCO-BERT, to achieve compress once and deploy everywhere.
Compared with state-of-the-art algorithms, YOCO-BERT provides more compact models, yet achieving 2.1%-4.5% average accuracy improvement on the GLUE benchmark.
arXiv Detail & Related papers (2021-06-04T12:17:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.