Low-Rank Optimal Transport through Factor Relaxation with Latent Coupling
- URL: http://arxiv.org/abs/2411.10555v1
- Date: Fri, 15 Nov 2024 20:07:15 GMT
- Title: Low-Rank Optimal Transport through Factor Relaxation with Latent Coupling
- Authors: Peter Halmos, Xinhao Liu, Julian Gold, Benjamin J Raphael,
- Abstract summary: A key challenge in applying optimal transport to massive datasets is the quadratic scaling of the coupling matrix with the size of the dataset.
We derive an alternative parameterization of the low-rank problem based on the $textitlatent coupling$ (LC) factorization.
We demonstrate superior performance on diverse applications -- including graph clustering and spatial transcriptomics -- while demonstrating its interpretability.
- Score: 1.8749305679160366
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Optimal transport (OT) is a general framework for finding a minimum-cost transport plan, or coupling, between probability distributions, and has many applications in machine learning. A key challenge in applying OT to massive datasets is the quadratic scaling of the coupling matrix with the size of the dataset. [Forrow et al. 2019] introduced a factored coupling for the k-Wasserstein barycenter problem, which [Scetbon et al. 2021] adapted to solve the primal low-rank OT problem. We derive an alternative parameterization of the low-rank problem based on the $\textit{latent coupling}$ (LC) factorization previously introduced by [Lin et al. 2021] generalizing [Forrow et al. 2019]. The LC factorization has multiple advantages for low-rank OT including decoupling the problem into three OT problems and greater flexibility and interpretability. We leverage these advantages to derive a new algorithm $\textit{Factor Relaxation with Latent Coupling}$ (FRLC), which uses $\textit{coordinate}$ mirror descent to compute the LC factorization. FRLC handles multiple OT objectives (Wasserstein, Gromov-Wasserstein, Fused Gromov-Wasserstein), and marginal constraints (balanced, unbalanced, and semi-relaxed) with linear space complexity. We provide theoretical results on FRLC, and demonstrate superior performance on diverse applications -- including graph clustering and spatial transcriptomics -- while demonstrating its interpretability.
Related papers
- Hierarchical Refinement: Optimal Transport to Infinity and Beyond [1.8749305679160366]
Optimal transport (OT) has enjoyed great success in machine-learning as a principled way to align datasets via a least-cost correspondence.
Sinkhorn has quadratic space complexity in the number of points, limiting the scalability to larger datasets.
We derive an algorithm that dynamically constructs a multiscale partition of a dataset using low-rank OT subproblems.
arXiv Detail & Related papers (2025-03-04T22:00:12Z) - A Nearly Optimal and Low-Switching Algorithm for Reinforcement Learning
with General Function Approximation [66.26739783789387]
We propose a new algorithm, Monotonic Q-Learning with Upper Confidence Bound (MQL-UCB) for reinforcement learning.
MQL-UCB achieves minimax optimal regret of $tildeO(dsqrtHK)$ when $K$ is sufficiently large and near-optimal policy switching cost.
Our work sheds light on designing provably sample-efficient and deployment-efficient Q-learning with nonlinear function approximation.
arXiv Detail & Related papers (2023-11-26T08:31:57Z) - Unbalanced Low-rank Optimal Transport Solvers [38.79369155558385]
We propose algorithms to implement extensions for the linear OT problem and its Fused-Gromov-Wasserstein generalization.
The goal of this paper is to merge these two strains, to achieve the promise of textitboth versatile/scalable unbalanced/low-rank OT solvers.
arXiv Detail & Related papers (2023-05-31T10:39:51Z) - Robust computation of optimal transport by $\eta$-potential
regularization [79.24513412588745]
Optimal transport (OT) has become a widely used tool in the machine learning field to measure the discrepancy between probability distributions.
We propose regularizing OT with the beta-potential term associated with the so-called $beta$-divergence.
We experimentally demonstrate that the transport matrix computed with our algorithm helps estimate a probability distribution robustly even in the presence of outliers.
arXiv Detail & Related papers (2022-12-26T18:37:28Z) - FeDXL: Provable Federated Learning for Deep X-Risk Optimization [105.17383135458897]
We tackle a novel federated learning (FL) problem for optimizing a family of X-risks, to which no existing algorithms are applicable.
The challenges for designing an FL algorithm for X-risks lie in the non-decomability of the objective over multiple machines and the interdependency between different machines.
arXiv Detail & Related papers (2022-10-26T00:23:36Z) - Sparsity-Constrained Optimal Transport [27.76137474217754]
Regularized optimal transport is now increasingly used as a loss or as a matching layer in neural networks.
We propose a new approach for OT with explicit cardinality constraints on the transportation plan.
Our method can be thought as a middle ground between unregularized OT (recovered in the case $k$) and quadratically-regularized OT (recovered when $k$ is large enough)
arXiv Detail & Related papers (2022-09-30T13:39:47Z) - Low-rank Optimal Transport: Approximation, Statistics and Debiasing [51.50788603386766]
Low-rank optimal transport (LOT) approach advocated in citescetbon 2021lowrank
LOT is seen as a legitimate contender to entropic regularization when compared on properties of interest.
We target each of these areas in this paper in order to cement the impact of low-rank approaches in computational OT.
arXiv Detail & Related papers (2022-05-24T20:51:37Z) - Permutation Compressors for Provably Faster Distributed Nonconvex
Optimization [68.8204255655161]
We show that the MARINA method of Gorbunov et al (2021) can be considered as a state-of-the-art method in terms of theoretical communication complexity.
Theory of MARINA to support the theory of potentially em correlated compressors, extends to the method beyond the classical independent compressors setting.
arXiv Detail & Related papers (2021-10-07T09:38:15Z) - On the complexity of the optimal transport problem with graph-structured
cost [9.24979291231758]
Multi-marginal optimal transport (MOT) is a generalization of optimal transport to multiple marginals.
The usage of MOT has been largely impeded by its computational complexity which scales exponentially in the number of marginals.
arXiv Detail & Related papers (2021-10-01T19:29:59Z) - Linear-Time Gromov Wasserstein Distances using Low Rank Couplings and
Costs [45.87981728307819]
The ability to compare and align related datasets living in heterogeneous spaces plays an increasingly important role in machine learning.
The Gromov-Wasserstein (GW) formalism can help tackle this problem.
arXiv Detail & Related papers (2021-06-02T12:50:56Z) - Solving weakly supervised regression problem using low-rank manifold
regularization [77.34726150561087]
We solve a weakly supervised regression problem.
Under "weakly" we understand that for some training points the labels are known, for some unknown, and for others uncertain due to the presence of random noise or other reasons such as lack of resources.
In the numerical section, we applied the suggested method to artificial and real datasets using Monte-Carlo modeling.
arXiv Detail & Related papers (2021-04-13T23:21:01Z) - Low-Rank Sinkhorn Factorization [45.87981728307819]
We introduce an explicit factorization of low rank couplings as a product of textitsub-coupling factors linked by a common marginal.
We prove the non-asymptotic stationary convergence of this algorithm and illustrate its efficiency on benchmark experiments.
arXiv Detail & Related papers (2021-03-08T13:18:45Z) - Computationally efficient sparse clustering [67.95910835079825]
We provide a finite sample analysis of a new clustering algorithm based on PCA.
We show that it achieves the minimax optimal misclustering rate in the regime $|theta infty$.
arXiv Detail & Related papers (2020-05-21T17:51:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.