A Regularized LSTM Method for Detecting Fake News Articles
- URL: http://arxiv.org/abs/2411.10713v1
- Date: Sat, 16 Nov 2024 05:54:36 GMT
- Title: A Regularized LSTM Method for Detecting Fake News Articles
- Authors: Tanjina Sultana Camelia, Faizur Rahman Fahim, Md. Musfique Anwar,
- Abstract summary: This paper develops an advanced machine learning solution for detecting fake news articles.
We leverage a comprehensive dataset of news articles, including 23,502 fake news articles and 21,417 accurate news articles.
Our work highlights the potential for deploying such models in real-world applications.
- Score: 0.0
- License:
- Abstract: Nowadays, the rapid diffusion of fake news poses a significant problem, as it can spread misinformation and confusion. This paper aims to develop an advanced machine learning solution for detecting fake news articles. Leveraging a comprehensive dataset of news articles, including 23,502 fake news articles and 21,417 accurate news articles, we implemented and evaluated three machine-learning models. Our dataset, curated from diverse sources, provides rich textual content categorized into title, text, subject, and Date features. These features are essential for training robust classification models to distinguish between fake and authentic news articles. The initial model employed a Long Short-Term Memory (LSTM) network, achieving an accuracy of 94%. The second model improved upon this by incorporating additional regularization techniques and fine-tuning hyperparameters, resulting in a 97% accuracy. The final model combined the strengths of previous architectures with advanced optimization strategies, achieving a peak accuracy of 98%. These results demonstrate the effectiveness of our approach in identifying fake news with high precision. Implementing these models showcases significant advancements in natural language processing and machine learning techniques, contributing valuable tools for combating misinformation. Our work highlights the potential for deploying such models in real-world applications, providing a reliable method for automated fake news detection and enhancing the credibility of news dissemination.
Related papers
- VERITAS-NLI : Validation and Extraction of Reliable Information Through Automated Scraping and Natural Language Inference [0.0]
The rise of fake news poses an alarming threat to the integrity of public discourse, societal trust, and reputed news sources.
We propose our novel solution, leveraging web-scraping techniques and Natural Language Inference (NLI) models.
Our system is evaluated on a diverse self-curated evaluation dataset spanning over multiple news channels and broad domains.
arXiv Detail & Related papers (2024-10-12T09:25:12Z) - Ethio-Fake: Cutting-Edge Approaches to Combat Fake News in Under-Resourced Languages Using Explainable AI [44.21078435758592]
Misinformation can spread quickly due to the ease of creating and disseminating content.
Traditional approaches to fake news detection often rely solely on content-based features.
We propose a comprehensive approach that integrates social context-based features with news content features.
arXiv Detail & Related papers (2024-10-03T15:49:35Z) - Adapting Fake News Detection to the Era of Large Language Models [48.5847914481222]
We study the interplay between machine-(paraphrased) real news, machine-generated fake news, human-written fake news, and human-written real news.
Our experiments reveal an interesting pattern that detectors trained exclusively on human-written articles can indeed perform well at detecting machine-generated fake news, but not vice versa.
arXiv Detail & Related papers (2023-11-02T08:39:45Z) - Multiverse: Multilingual Evidence for Fake News Detection [71.51905606492376]
Multiverse is a new feature based on multilingual evidence that can be used for fake news detection.
The hypothesis of the usage of cross-lingual evidence as a feature for fake news detection is confirmed.
arXiv Detail & Related papers (2022-11-25T18:24:17Z) - Faking Fake News for Real Fake News Detection: Propaganda-loaded
Training Data Generation [105.20743048379387]
We propose a novel framework for generating training examples informed by the known styles and strategies of human-authored propaganda.
Specifically, we perform self-critical sequence training guided by natural language inference to ensure the validity of the generated articles.
Our experimental results show that fake news detectors trained on PropaNews are better at detecting human-written disinformation by 3.62 - 7.69% F1 score on two public datasets.
arXiv Detail & Related papers (2022-03-10T14:24:19Z) - Multimodal Fusion with BERT and Attention Mechanism for Fake News
Detection [0.0]
We present a novel method for detecting fake news by fusing multimodal features derived from textual and visual data.
Experimental results showed that our approach performs better than the current state-of-the-art method on a public Twitter dataset by 3.1% accuracy.
arXiv Detail & Related papers (2021-04-23T08:47:54Z) - Hidden Biases in Unreliable News Detection Datasets [60.71991809782698]
We show that selection bias during data collection leads to undesired artifacts in the datasets.
We observed a significant drop (>10%) in accuracy for all models tested in a clean split with no train/test source overlap.
We suggest future dataset creation include a simple model as a difficulty/bias probe and future model development use a clean non-overlapping site and date split.
arXiv Detail & Related papers (2021-04-20T17:16:41Z) - Connecting the Dots Between Fact Verification and Fake News Detection [21.564628184287173]
We propose a simple yet effective approach to connect the dots between fact verification and fake news detection.
Our approach makes use of the recent success of fact verification models and enables zero-shot fake news detection.
arXiv Detail & Related papers (2020-10-11T09:28:52Z) - Detecting Cross-Modal Inconsistency to Defend Against Neural Fake News [57.9843300852526]
We introduce the more realistic and challenging task of defending against machine-generated news that also includes images and captions.
To identify the possible weaknesses that adversaries can exploit, we create a NeuralNews dataset composed of 4 different types of generated articles.
In addition to the valuable insights gleaned from our user study experiments, we provide a relatively effective approach based on detecting visual-semantic inconsistencies.
arXiv Detail & Related papers (2020-09-16T14:13:15Z) - A Deep Learning Approach for Automatic Detection of Fake News [47.00462375817434]
We propose two models based on deep learning for solving fake news detection problem in online news contents of multiple domains.
We evaluate our techniques on the two recently released datasets, namely FakeNews AMT and Celebrity for fake news detection.
arXiv Detail & Related papers (2020-05-11T09:07:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.