Towards a Comprehensive Benchmark for Pathological Lymph Node Metastasis in Breast Cancer Sections
- URL: http://arxiv.org/abs/2411.10752v1
- Date: Sat, 16 Nov 2024 09:19:24 GMT
- Title: Towards a Comprehensive Benchmark for Pathological Lymph Node Metastasis in Breast Cancer Sections
- Authors: Xitong Ling, Yuanyuan Lei, Jiawen Li, Junru Cheng, Wenting Huang, Tian Guan, Jian Guan, Yonghong He,
- Abstract summary: We reprocessed 1,399 whole slide images (WSIs) and labels from the Camelyon-16 and Camelyon-17 datasets.
Based on the sizes of re-annotated tumor regions, we upgraded the binary cancer screening task to a four-class task.
- Score: 21.75452517154339
- License:
- Abstract: Advances in optical microscopy scanning have significantly contributed to computational pathology (CPath) by converting traditional histopathological slides into whole slide images (WSIs). This development enables comprehensive digital reviews by pathologists and accelerates AI-driven diagnostic support for WSI analysis. Recent advances in foundational pathology models have increased the need for benchmarking tasks. The Camelyon series is one of the most widely used open-source datasets in computational pathology. However, the quality, accessibility, and clinical relevance of the labels have not been comprehensively evaluated. In this study, we reprocessed 1,399 WSIs and labels from the Camelyon-16 and Camelyon-17 datasets, removing low-quality slides, correcting erroneous labels, and providing expert pixel annotations for tumor regions in the previously unreleased test set. Based on the sizes of re-annotated tumor regions, we upgraded the binary cancer screening task to a four-class task: negative, micro-metastasis, macro-metastasis, and Isolated Tumor Cells (ITC). We reevaluated pre-trained pathology feature extractors and multiple instance learning (MIL) methods using the cleaned dataset, providing a benchmark that advances AI development in histopathology.
Related papers
- Large-scale cervical precancerous screening via AI-assisted cytology whole slide image analysis [11.148919818020495]
Cervical Cancer continues to be the leading gynecological malignancy, posing a persistent threat to women's health on a global scale.
Early screening via Whole Slide Image (WSI) diagnosis is critical to prevent this Cancer progression and improve survival rate.
But pathologist's single test suffers inevitable false negative due to the immense number of cells that need to be reviewed within a WSI.
arXiv Detail & Related papers (2024-07-28T15:29:07Z) - Benchmarking Embedding Aggregation Methods in Computational Pathology: A Clinical Data Perspective [32.93871326428446]
Recent advances in artificial intelligence (AI) are revolutionizing medical imaging and computational pathology.
A constant challenge in the analysis of digital Whole Slide Images (WSIs) is the problem of aggregating tens of thousands of tile-level image embeddings to a slide-level representation.
This study conducts a benchmarking analysis of ten slide-level aggregation techniques across nine clinically relevant tasks.
arXiv Detail & Related papers (2024-07-10T17:00:57Z) - Finding Regions of Interest in Whole Slide Images Using Multiple Instance Learning [0.23301643766310368]
Whole Slide Images (WSI) represent a particular challenge to AI-based/AI-mediated analysis because pathology labeling is typically done at slide-level, instead of tile-level.
We propose a weakly supervised Multiple Instance Learning (MIL) approach to accurately predict the overall cancer phenotype.
arXiv Detail & Related papers (2024-04-01T19:33:41Z) - Beyond attention: deriving biologically interpretable insights from
weakly-supervised multiple-instance learning models [2.639541396835675]
We introduce prediction-attention-weighted (PAW) maps by combining tile-level attention and prediction scores produced by a refined encoder.
We also introduce a biological feature instantiation technique by integrating PAW maps with nuclei segmentation masks.
Our approach reveals that regions that are predictive of adverse prognosis do not tend to co-locate with the tumour regions.
arXiv Detail & Related papers (2023-09-07T09:44:35Z) - Hierarchical Transformer for Survival Prediction Using Multimodality
Whole Slide Images and Genomics [63.76637479503006]
Learning good representation of giga-pixel level whole slide pathology images (WSI) for downstream tasks is critical.
This paper proposes a hierarchical-based multimodal transformer framework that learns a hierarchical mapping between pathology images and corresponding genes.
Our architecture requires fewer GPU resources compared with benchmark methods while maintaining better WSI representation ability.
arXiv Detail & Related papers (2022-11-29T23:47:56Z) - A Pathologist-Informed Workflow for Classification of Prostate Glands in
Histopathology [62.997667081978825]
Pathologists diagnose and grade prostate cancer by examining tissue from needle biopsies on glass slides.
Cancer's severity and risk of metastasis are determined by the Gleason grade, a score based on the organization and morphology of prostate cancer glands.
This paper proposes an automated workflow that follows pathologists' textitmodus operandi, isolating and classifying multi-scale patches of individual glands.
arXiv Detail & Related papers (2022-09-27T14:08:19Z) - End-to-end Learning for Image-based Detection of Molecular Alterations
in Digital Pathology [1.916179040410189]
Current approaches for classification of whole slide images (WSI) in digital pathology predominantly utilize a two-stage learning pipeline.
A major drawback of such approaches is the requirement for task-specific auxiliary labels which are not acquired in clinical routine.
We propose a novel learning pipeline for WSI classification that is trainable end-to-end and does not require any auxiliary annotations.
arXiv Detail & Related papers (2022-06-30T20:30:33Z) - WSSS4LUAD: Grand Challenge on Weakly-supervised Tissue Semantic
Segmentation for Lung Adenocarcinoma [51.50991881342181]
This challenge includes 10,091 patch-level annotations and over 130 million labeled pixels.
First place team achieved mIoU of 0.8413 (tumor: 0.8389, stroma: 0.7931, normal: 0.8919)
arXiv Detail & Related papers (2022-04-13T15:27:05Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
We propose a graph-based sparse principal component analysis (GS-PCA) network, for automated detection of cancerous lesions on histological lung slides stained by hematoxylin and eosin (H&E)
We evaluate the performance of the proposed algorithm on H&E slides obtained from an SVM K-rasG12D lung cancer mouse model using precision/recall rates, F-score, Tanimoto coefficient, and area under the curve (AUC) of the receiver operator characteristic (ROC)
arXiv Detail & Related papers (2021-10-27T19:28:36Z) - Label Cleaning Multiple Instance Learning: Refining Coarse Annotations
on Single Whole-Slide Images [83.7047542725469]
Annotating cancerous regions in whole-slide images (WSIs) of pathology samples plays a critical role in clinical diagnosis, biomedical research, and machine learning algorithms development.
We present a method, named Label Cleaning Multiple Instance Learning (LC-MIL), to refine coarse annotations on a single WSI without the need of external training data.
Our experiments on a heterogeneous WSI set with breast cancer lymph node metastasis, liver cancer, and colorectal cancer samples show that LC-MIL significantly refines the coarse annotations, outperforming the state-of-the-art alternatives, even while learning from a single slide.
arXiv Detail & Related papers (2021-09-22T15:06:06Z) - Weakly supervised multiple instance learning histopathological tumor
segmentation [51.085268272912415]
We propose a weakly supervised framework for whole slide imaging segmentation.
We exploit a multiple instance learning scheme for training models.
The proposed framework has been evaluated on multi-locations and multi-centric public data from The Cancer Genome Atlas and the PatchCamelyon dataset.
arXiv Detail & Related papers (2020-04-10T13:12:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.