Distributed solar generation forecasting using attention-based deep neural networks for cloud movement prediction
- URL: http://arxiv.org/abs/2411.10921v1
- Date: Sun, 17 Nov 2024 00:37:35 GMT
- Title: Distributed solar generation forecasting using attention-based deep neural networks for cloud movement prediction
- Authors: Maneesha Perera, Julian De Hoog, Kasun Bandara, Saman Halgamuge,
- Abstract summary: We propose an attention-based convolutional long short-term memory network to forecast cloud movement and apply an existing self-attention-based method to forecast cloud movement.
We find that for clouds at high altitudes, the cloud predictions obtained using attention-based methods result in solar forecast skill score improvements of 5.86% or more compared to non-attention-based methods.
- Score: 2.9884358130293056
- License:
- Abstract: Accurate forecasts of distributed solar generation are necessary to reduce negative impacts resulting from the increased uptake of distributed solar photovoltaic (PV) systems. However, the high variability of solar generation over short time intervals (seconds to minutes) caused by cloud movement makes this forecasting task difficult. To address this, using cloud images, which capture the second-to-second changes in cloud cover affecting solar generation, has shown promise. Recently, deep neural networks with "attention" that focus on important regions of an image have been applied with success in many computer vision applications. However, their use for forecasting cloud movement has not yet been extensively explored. In this work, we propose an attention-based convolutional long short-term memory network to forecast cloud movement and apply an existing self-attention-based method previously proposed for video prediction to forecast cloud movement. We investigate and discuss the impact of cloud forecasts from attention-based methods towards forecasting distributed solar generation, compared to cloud forecasts from non-attention-based methods. We further provide insights into the different solar forecast performances that can be achieved for high and low altitude clouds. We find that for clouds at high altitudes, the cloud predictions obtained using attention-based methods result in solar forecast skill score improvements of 5.86% or more compared to non-attention-based methods.
Related papers
- FengWu-W2S: A deep learning model for seamless weather-to-subseasonal forecast of global atmosphere [53.22497376154084]
We propose FengWu-Weather to Subseasonal (FengWu-W2S), which builds on the FengWu global weather forecast model and incorporates an ocean-atmosphere-land coupling structure along with a diverse perturbation strategy.
Our hindcast results demonstrate that FengWu-W2S reliably predicts atmospheric conditions out to 3-6 weeks ahead, enhancing predictive capabilities for global surface air temperature, precipitation, geopotential height and intraseasonal signals such as the Madden-Julian Oscillation (MJO) and North Atlantic Oscillation (NAO)
Our ablation experiments on forecast error growth from daily to seasonal timescales reveal potential
arXiv Detail & Related papers (2024-11-15T13:44:37Z) - Precise Forecasting of Sky Images Using Spatial Warping [12.042758147684822]
We introduce a deep learning method to predict a future sky image frame with higher resolution than previous methods.
Our main contribution is to derive an optimal warping method to counter the adverse affects of clouds at the horizon.
arXiv Detail & Related papers (2024-09-18T17:25:42Z) - Computational Imaging for Long-Term Prediction of Solar Irradiance [14.339647548237838]
Real-time forecasting of cloud movement is necessary to schedule and allocate energy across grid-connected photovoltaic systems.
Previous works monitored cloud movement using wide-angle field of view imagery of the sky.
We design and deploy a catadioptric system that delivers wide-angle spatial resolution of the sky over its field of view.
arXiv Detail & Related papers (2024-09-18T14:29:43Z) - Observation-Guided Meteorological Field Downscaling at Station Scale: A
Benchmark and a New Method [66.80344502790231]
We extend meteorological downscaling to arbitrary scattered station scales and establish a new benchmark and dataset.
Inspired by data assimilation techniques, we integrate observational data into the downscaling process, providing multi-scale observational priors.
Our proposed method outperforms other specially designed baseline models on multiple surface variables.
arXiv Detail & Related papers (2024-01-22T14:02:56Z) - Streaming Motion Forecasting for Autonomous Driving [71.7468645504988]
We introduce a benchmark that queries future trajectories on streaming data and we refer to it as "streaming forecasting"
Our benchmark inherently captures the disappearance and re-appearance of agents, which is a safety-critical problem yet overlooked by snapshot-based benchmarks.
We propose a plug-and-play meta-algorithm called "Predictive Streamer" that can adapt any snapshot-based forecaster into a streaming forecaster.
arXiv Detail & Related papers (2023-10-02T17:13:16Z) - Improving day-ahead Solar Irradiance Time Series Forecasting by
Leveraging Spatio-Temporal Context [46.72071291175356]
Solar power harbors immense potential in mitigating climate change by substantially reducing CO$_2$ emissions.
However, the inherent variability of solar irradiance poses a significant challenge for seamlessly integrating solar power into the electrical grid.
In this paper, we put forth a deep learning architecture designed to harnesstemporal context using satellite data.
arXiv Detail & Related papers (2023-06-01T19:54:39Z) - Omnivision forecasting: combining satellite observations with sky images
for improved intra-hour solar energy predictions [0.0]
Integration of intermittent renewable energy sources into electric grids is challenging.
Short-term changes in electricity production caused by occluding clouds can be predicted at different time scales.
In this study, we integrate these two complementary points of view on the cloud cover in a single machine learning framework.
arXiv Detail & Related papers (2022-06-07T11:52:09Z) - Unsupervised Point Cloud Representation Learning with Deep Neural
Networks: A Survey [104.71816962689296]
Unsupervised point cloud representation learning has attracted increasing attention due to the constraint in large-scale point cloud labelling.
This paper provides a comprehensive review of unsupervised point cloud representation learning using deep neural networks.
arXiv Detail & Related papers (2022-02-28T07:46:05Z) - Forecasting large-scale circulation regimes using deformable
convolutional neural networks and global spatiotemporal climate data [86.1450118623908]
We investigate a supervised machine learning approach based on deformable convolutional neural networks (deCNNs)
We forecast the North Atlantic-European weather regimes during extended boreal winter for 1 to 15 days into the future.
Due to its wider field of view, we also observe deCNN achieving considerably better performance than regular convolutional neural networks at lead times beyond 5-6 days.
arXiv Detail & Related papers (2022-02-10T11:37:00Z) - Review of Kernel Learning for Intra-Hour Solar Forecasting with Infrared
Sky Images and Cloud Dynamic Feature Extraction [0.0]
The uncertainty of the energy generated by photovoltaic systems incurs an additional cost for a guaranteed, reliable supply of energy.
This investigation aims to decrease the additional cost by introducing probabilistic multi-task intra-hour solar forecasting.
arXiv Detail & Related papers (2021-10-11T21:25:20Z) - ECLIPSE : Envisioning Cloud Induced Perturbations in Solar Energy [2.867517731896504]
ECLIPSE is a neural network architecture that models cloud motion from sky images to predict both future segmented images and corresponding irradiance levels.
We show that ECLIPSE anticipates critical events and considerably reduces temporal delay while generating visually realistic futures.
arXiv Detail & Related papers (2021-04-26T09:19:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.