Map-Free Trajectory Prediction with Map Distillation and Hierarchical Encoding
- URL: http://arxiv.org/abs/2411.10961v1
- Date: Sun, 17 Nov 2024 04:50:44 GMT
- Title: Map-Free Trajectory Prediction with Map Distillation and Hierarchical Encoding
- Authors: Xiaodong Liu, Yucheng Xing, Xin Wang,
- Abstract summary: MFTP is a Map-Free Trajectory Prediction method that offers several advantages.
First, it eliminates the need for HD maps during inference while still benefiting from map priors during training via knowledge distillation.
Second, we present a novel hierarchical encoder that effectively extracts spatial-temporal agent features and aggregates them into multiple trajectory queries.
- Score: 8.857237929151795
- License:
- Abstract: Reliable motion forecasting of surrounding agents is essential for ensuring the safe operation of autonomous vehicles. Many existing trajectory prediction methods rely heavily on high-definition (HD) maps as strong driving priors. However, the availability and accuracy of these priors are not guaranteed due to substantial costs to build, localization errors of vehicles, or ongoing road constructions. In this paper, we introduce MFTP, a Map-Free Trajectory Prediction method that offers several advantages. First, it eliminates the need for HD maps during inference while still benefiting from map priors during training via knowledge distillation. Second, we present a novel hierarchical encoder that effectively extracts spatial-temporal agent features and aggregates them into multiple trajectory queries. Additionally, we introduce an iterative decoder that sequentially decodes trajectory queries to generate the final predictions. Extensive experiments show that our approach achieves state-of-the-art performance on the Argoverse dataset under the map-free setting.
Related papers
- TopoSD: Topology-Enhanced Lane Segment Perception with SDMap Prior [70.84644266024571]
We propose to train a perception model to "see" standard definition maps (SDMaps)
We encode SDMap elements into neural spatial map representations and instance tokens, and then incorporate such complementary features as prior information.
Based on the lane segment representation framework, the model simultaneously predicts lanes, centrelines and their topology.
arXiv Detail & Related papers (2024-11-22T06:13:42Z) - Driving with Prior Maps: Unified Vector Prior Encoding for Autonomous Vehicle Mapping [18.97422977086127]
High-Definition Maps (HD maps) are essential for the precise navigation and decision-making of autonomous vehicles.
The online construction of HD maps using on-board sensors has emerged as a promising solution.
This paper proposes the PriorDrive framework to address these limitations by harnessing the power of prior maps.
arXiv Detail & Related papers (2024-09-09T06:17:46Z) - PriorMapNet: Enhancing Online Vectorized HD Map Construction with Priors [15.475364300374403]
We introduce PriorMapNet to enhance online vectorized HD map construction with priors.
Our proposed PriorMapNet achieves state-of-the-art performance in the online vectorized HD map construction task on nuScenes and Argoverse2 datasets.
arXiv Detail & Related papers (2024-08-16T15:26:23Z) - MapsTP: HD Map Images Based Multimodal Trajectory Prediction for Automated Vehicles [8.229161517598373]
We leverage ResNet-50 to extract image features from high-definition map data and use IMU sensor data to calculate speed, acceleration, and yaw rate.
A temporal probabilistic network is employed to compute potential trajectories, selecting the most accurate and highly probable trajectory paths.
arXiv Detail & Related papers (2024-07-08T10:45:30Z) - Producing and Leveraging Online Map Uncertainty in Trajectory Prediction [30.190497345299004]
We extend state-of-the-art online map estimation methods to additionally estimate uncertainty.
In doing so, we find that incorporating uncertainty yields up to 50% faster training convergence and up to 15% better prediction performance.
arXiv Detail & Related papers (2024-03-25T05:58:33Z) - Augmenting Lane Perception and Topology Understanding with Standard
Definition Navigation Maps [51.24861159115138]
Standard Definition (SD) maps are more affordable and have worldwide coverage, offering a scalable alternative.
We propose a novel framework to integrate SD maps into online map prediction and propose a Transformer-based encoder, SD Map Representations from transFormers.
This enhancement consistently and significantly boosts (by up to 60%) lane detection and topology prediction on current state-of-the-art online map prediction methods.
arXiv Detail & Related papers (2023-11-07T15:42:22Z) - Implicit Occupancy Flow Fields for Perception and Prediction in
Self-Driving [68.95178518732965]
A self-driving vehicle (SDV) must be able to perceive its surroundings and predict the future behavior of other traffic participants.
Existing works either perform object detection followed by trajectory of the detected objects, or predict dense occupancy and flow grids for the whole scene.
This motivates our unified approach to perception and future prediction that implicitly represents occupancy and flow over time with a single neural network.
arXiv Detail & Related papers (2023-08-02T23:39:24Z) - Enhancing Mapless Trajectory Prediction through Knowledge Distillation [19.626383744807068]
High-definition maps (HD maps) may suffer from the high cost of annotation or restrictions of law that limits their widespread use.
In this paper, we tackle the problem of improving the consistency of multi-modal prediction trajectories and the real road topology.
Our solution is generalizable for common trajectory prediction networks and does not bring extra computation burden.
arXiv Detail & Related papers (2023-06-25T09:05:48Z) - Trajectory Forecasting from Detection with Uncertainty-Aware Motion
Encoding [121.66374635092097]
Trajectories obtained from object detection and tracking are inevitably noisy.
We propose a trajectory predictor directly based on detection results without relying on explicitly formed trajectories.
arXiv Detail & Related papers (2022-02-03T09:09:56Z) - Radar-based Dynamic Occupancy Grid Mapping and Object Detection [55.74894405714851]
In recent years, the classical occupancy grid map approach has been extended to dynamic occupancy grid maps.
This paper presents the further development of a previous approach.
The data of multiple radar sensors are fused, and a grid-based object tracking and mapping method is applied.
arXiv Detail & Related papers (2020-08-09T09:26:30Z) - TPNet: Trajectory Proposal Network for Motion Prediction [81.28716372763128]
Trajectory Proposal Network (TPNet) is a novel two-stage motion prediction framework.
TPNet first generates a candidate set of future trajectories as hypothesis proposals, then makes the final predictions by classifying and refining the proposals.
Experiments on four large-scale trajectory prediction datasets, show that TPNet achieves the state-of-the-art results both quantitatively and qualitatively.
arXiv Detail & Related papers (2020-04-26T00:01:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.