Generating medical screening questionnaires through analysis of social media data
- URL: http://arxiv.org/abs/2411.11048v1
- Date: Sun, 17 Nov 2024 11:57:18 GMT
- Title: Generating medical screening questionnaires through analysis of social media data
- Authors: Ortal Ashkenazi, Elad Yom-Tov, Liron Vardi David,
- Abstract summary: We show a preliminary investigation into the feasibility of generating screening questionnaires for a given medical condition from social media postings.
We create questionnaires for three conditions using the data of several hundreds of users from Reddit.
Our results suggest that the process of questionnaire generation can be, at least partly, automated.
- Score: 1.360022695699485
- License:
- Abstract: Screening questionnaires are used in medicine as a diagnostic aid. Creating them is a long and expensive process, which could potentially be improved through analysis of social media posts related to symptoms and behaviors prior to diagnosis. Here we show a preliminary investigation into the feasibility of generating screening questionnaires for a given medical condition from social media postings. The method first identifies a cohort of relevant users through their posts in dedicated patient groups and a control group of users who reported similar symptoms but did not report being diagnosed with the condition of interest. Posts made prior to diagnosis are used to generate decision rules to differentiate between the different groups, by clustering symptoms mentioned by these users and training a decision tree to differentiate between the two groups. We validate the generated rules by correlating them with scores given by medical doctors to matching hypothetical cases. We demonstrate the proposed method by creating questionnaires for three conditions (endometriosis, lupus, and gout) using the data of several hundreds of users from Reddit. These questionnaires were then validated by medical doctors. The average Pearson's correlation between the latter's scores and the decision rules were 0.58 (endometriosis), 0.40 (lupus) and 0.27 (gout). Our results suggest that the process of questionnaire generation can be, at least partly, automated. These questionnaires are advantageous in that they are based on real-world experience but are currently lacking in their ability to capture the context, duration, and timing of symptoms.
Related papers
- Explainable Depression Symptom Detection in Social Media [2.677715367737641]
We propose using transformer-based architectures to detect and explain the appearance of depressive symptom markers in the users' writings.
Our natural language explanations enable clinicians to interpret the models' decisions based on validated symptoms.
arXiv Detail & Related papers (2023-10-20T17:05:27Z) - Multi-task Explainable Skin Lesion Classification [54.76511683427566]
We propose a few-shot-based approach for skin lesions that generalizes well with few labelled data.
The proposed approach comprises a fusion of a segmentation network that acts as an attention module and classification network.
arXiv Detail & Related papers (2023-10-11T05:49:47Z) - Adaptive questionnaires for facilitating patient data entry in clinical
decision support systems: Methods and application to STOPP/START v2 [1.8374319565577155]
We propose an original solution to simplify patient data entry using an adaptive questionnaire.
Considering a rule-based decision support systems, we designed methods for translating the system's clinical rules into display rules.
We show that it permits reducing by about two thirds the number of clinical conditions displayed in the questionnaire.
arXiv Detail & Related papers (2023-09-19T07:59:13Z) - Clinical trial site matching with improved diversity using fair policy
learning [56.01170456417214]
We learn a model that maps a clinical trial description to a ranked list of potential trial sites.
Unlike existing fairness frameworks, the group membership of each trial site is non-binary.
We propose fairness criteria based on demographic parity to address such a multi-group membership scenario.
arXiv Detail & Related papers (2022-04-13T16:35:28Z) - Multi-class versus One-class classifier in spontaneous speech analysis
oriented to Alzheimer Disease diagnosis [58.720142291102135]
The aim of our project is to contribute to earlier diagnosis of AD and better estimates of its severity by using automatic analysis performed through new biomarkers extracted from speech signal.
The use of information about outlier and Fractal Dimension features improves the system performance.
arXiv Detail & Related papers (2022-03-21T09:57:20Z) - Q-Pain: A Question Answering Dataset to Measure Social Bias in Pain
Management [5.044336341666555]
We introduce Q-Pain, a dataset for assessing bias in medical QA in the context of pain management.
We propose a new, rigorous framework, including a sample experimental design, to measure the potential biases present when making treatment decisions.
arXiv Detail & Related papers (2021-08-03T21:55:28Z) - Semi-Supervised Variational Reasoning for Medical Dialogue Generation [70.838542865384]
Two key characteristics are relevant for medical dialogue generation: patient states and physician actions.
We propose an end-to-end variational reasoning approach to medical dialogue generation.
A physician policy network composed of an action-classifier and two reasoning detectors is proposed for augmented reasoning ability.
arXiv Detail & Related papers (2021-05-13T04:14:35Z) - Risk of Training Diagnostic Algorithms on Data with Demographic Bias [0.5599792629509227]
We conduct a survey of the MICCAI 2018 proceedings to investigate the common practice in medical image analysis applications.
Surprisingly, we found that papers focusing on diagnosis rarely describe the demographics of the datasets used.
We show that it is possible to learn unbiased features by explicitly using demographic variables in an adversarial training setup.
arXiv Detail & Related papers (2020-05-20T13:51:01Z) - Hemogram Data as a Tool for Decision-making in COVID-19 Management:
Applications to Resource Scarcity Scenarios [62.997667081978825]
COVID-19 pandemics has challenged emergency response systems worldwide, with widespread reports of essential services breakdown and collapse of health care structure.
This work describes a machine learning model derived from hemogram exam data performed in symptomatic patients.
Proposed models can predict COVID-19 qRT-PCR results in symptomatic individuals with high accuracy, sensitivity and specificity.
arXiv Detail & Related papers (2020-05-10T01:45:03Z) - Towards Causality-Aware Inferring: A Sequential Discriminative Approach
for Medical Diagnosis [142.90770786804507]
Medical diagnosis assistant (MDA) aims to build an interactive diagnostic agent to sequentially inquire about symptoms for discriminating diseases.
This work attempts to address these critical issues in MDA by taking advantage of the causal diagram.
We propose a propensity-based patient simulator to effectively answer unrecorded inquiry by drawing knowledge from the other records.
arXiv Detail & Related papers (2020-03-14T02:05:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.