Reinforcing Competitive Multi-Agents for Playing So Long Sucker
- URL: http://arxiv.org/abs/2411.11057v1
- Date: Sun, 17 Nov 2024 12:38:13 GMT
- Title: Reinforcing Competitive Multi-Agents for Playing So Long Sucker
- Authors: Medant Sharan, Chandranath Adak,
- Abstract summary: This paper examines the use of classical deep reinforcement learning (DRL) algorithms, DQN, DDQN, and Dueling DQN, in the strategy game So Long Sucker.
The study's primary goal is to teach autonomous agents the game's rules and strategies using classical DRL methods.
- Score: 0.393259574660092
- License:
- Abstract: This paper examines the use of classical deep reinforcement learning (DRL) algorithms, DQN, DDQN, and Dueling DQN, in the strategy game So Long Sucker (SLS), a diplomacy-driven game defined by coalition-building and strategic betrayal. SLS poses unique challenges due to its blend of cooperative and adversarial dynamics, making it an ideal platform for studying multi-agent learning and game theory. The study's primary goal is to teach autonomous agents the game's rules and strategies using classical DRL methods. To support this effort, the authors developed a novel, publicly available implementation of SLS, featuring a graphical user interface (GUI) and benchmarking tools for DRL algorithms. Experimental results reveal that while considered basic by modern DRL standards, DQN, DDQN, and Dueling DQN agents achieved roughly 50% of the maximum possible game reward. This suggests a baseline understanding of the game's mechanics, with agents favoring legal moves over illegal ones. However, a significant limitation was the extensive training required, around 2000 games, for agents to reach peak performance, compared to human players who grasp the game within a few rounds. Even after prolonged training, agents occasionally made illegal moves, highlighting both the potential and limitations of these classical DRL methods in semi-complex, socially driven games. The findings establish a foundational benchmark for training agents in SLS and similar negotiation-based environments while underscoring the need for advanced or hybrid DRL approaches to improve learning efficiency and adaptability. Future research could incorporate game-theoretic strategies to enhance agent decision-making in dynamic multi-agent contexts.
Related papers
- FightLadder: A Benchmark for Competitive Multi-Agent Reinforcement Learning [25.857375787748715]
We present FightLadder, a real-time fighting game platform, to empower competitive MARL research.
We provide implementations of state-of-the-art MARL algorithms for competitive games, as well as a set of evaluation metrics.
We demonstrate the feasibility of this platform by training a general agent that consistently defeats 12 built-in characters in single-player mode.
arXiv Detail & Related papers (2024-06-04T08:04:23Z) - Two-Step Reinforcement Learning for Multistage Strategy Card Game [0.0]
This study introduces a two-step reinforcement learning (RL) strategy tailored for "The Lord of the Rings: The Card Game (LOTRCG)"
This research diverges from conventional RL methods by adopting a phased learning approach.
The paper also explores a multi-agent system, where distinct RL agents are employed for various decision-making aspects of the game.
arXiv Detail & Related papers (2023-11-29T01:31:21Z) - Leveraging Reward Consistency for Interpretable Feature Discovery in
Reinforcement Learning [69.19840497497503]
It is argued that the commonly used action matching principle is more like an explanation of deep neural networks (DNNs) than the interpretation of RL agents.
We propose to consider rewards, the essential objective of RL agents, as the essential objective of interpreting RL agents.
We verify and evaluate our method on the Atari 2600 games as well as Duckietown, a challenging self-driving car simulator environment.
arXiv Detail & Related papers (2023-09-04T09:09:54Z) - Mastering the Game of No-Press Diplomacy via Human-Regularized
Reinforcement Learning and Planning [95.78031053296513]
No-press Diplomacy is a complex strategy game involving both cooperation and competition.
We introduce a planning algorithm we call DiL-piKL that regularizes a reward-maximizing policy toward a human imitation-learned policy.
We show that DiL-piKL can be extended into a self-play reinforcement learning algorithm we call RL-DiL-piKL.
arXiv Detail & Related papers (2022-10-11T14:47:35Z) - Explore and Control with Adversarial Surprise [78.41972292110967]
Reinforcement learning (RL) provides a framework for learning goal-directed policies given user-specified rewards.
We propose a new unsupervised RL technique based on an adversarial game which pits two policies against each other to compete over the amount of surprise an RL agent experiences.
We show that our method leads to the emergence of complex skills by exhibiting clear phase transitions.
arXiv Detail & Related papers (2021-07-12T17:58:40Z) - Learning Monopoly Gameplay: A Hybrid Model-Free Deep Reinforcement
Learning and Imitation Learning Approach [31.066718635447746]
Reinforcement Learning (RL) relies on an agent interacting with an environment to maximize the cumulative sum of rewards received by it.
In multi-player Monopoly game, players have to make several decisions every turn which involves complex actions, such as making trades.
This paper introduces a Hybrid Model-Free Deep RL (DRL) approach that is capable of playing and learning winning strategies of Monopoly.
arXiv Detail & Related papers (2021-03-01T01:40:02Z) - DeepCrawl: Deep Reinforcement Learning for Turn-based Strategy Games [137.86426963572214]
We introduce DeepCrawl, a fully-playable Roguelike prototype for iOS and Android in which all agents are controlled by policy networks trained using Deep Reinforcement Learning (DRL)
Our aim is to understand whether recent advances in DRL can be used to develop convincing behavioral models for non-player characters in videogames.
arXiv Detail & Related papers (2020-12-03T13:53:29Z) - The NetHack Learning Environment [79.06395964379107]
We present the NetHack Learning Environment (NLE), a procedurally generated rogue-like environment for Reinforcement Learning research.
We argue that NetHack is sufficiently complex to drive long-term research on problems such as exploration, planning, skill acquisition, and language-conditioned RL.
We demonstrate empirical success for early stages of the game using a distributed Deep RL baseline and Random Network Distillation exploration.
arXiv Detail & Related papers (2020-06-24T14:12:56Z) - Distributed Reinforcement Learning for Cooperative Multi-Robot Object
Manipulation [53.262360083572005]
We consider solving a cooperative multi-robot object manipulation task using reinforcement learning (RL)
We propose two distributed multi-agent RL approaches: distributed approximate RL (DA-RL) and game-theoretic RL (GT-RL)
Although we focus on a small system of two agents in this paper, both DA-RL and GT-RL apply to general multi-agent systems, and are expected to scale well to large systems.
arXiv Detail & Related papers (2020-03-21T00:43:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.