Capturing Sparks of Abstraction for the ARC Challenge
- URL: http://arxiv.org/abs/2411.11206v1
- Date: Sun, 17 Nov 2024 23:40:00 GMT
- Title: Capturing Sparks of Abstraction for the ARC Challenge
- Authors: Martin Andrews,
- Abstract summary: Even commercial Large Language Models (LLMs) struggle to 'understand' many of the problems.
We demonstrate that 'Sparks of Abstraction' can be extracted from the LLM output.
Both the arc-dsl-llm DSL framework and the Gemini LLM-generated data are made Open Source.
- Score: 0.10878040851637999
- License:
- Abstract: Excellent progress has been made recently in solving ARC Challenge problems. However, it seems that new techniques may be required to push beyond 60% accuracy. Even commercial Large Language Models (LLMs) struggle to 'understand' many of the problems (when given the input and output grids), which makes discovering solutions by LLM-lead program search somewhat futile. In this work, LLM 'understanding' is attempted from a stronger starting position : An LLM is given complete solutions to tasks in code, and then asked to explain how the task is being solved at various levels of abstraction. Specifically, the LLM was given code solutions implemented in arc-dsl-llm (an LLM-legible version of Hodel's arc-dsl to obtain: (a) commented code; (b) code refactored into reusable functional chunks; (c) problem solution steps; and (d) high-level problem-solving tactics. We demonstrate that 'Sparks of Abstraction' can be extracted from the LLM output - in a form that could be used in downstream tasks with Local LLMs eligible to enter the ARC Prize. Both the arc-dsl-llm DSL framework (with the re-engineered solutions) and the Gemini LLM-generated data (along with the generation code) are made Open Source.
Related papers
- Combining LLM Code Generation with Formal Specifications and Reactive Program Synthesis [0.7580487359358722]
Large Language Models (LLMs) struggle with accuracy and are unsuitable for high-risk applications.
We introduce a solution that divides the code generation into two parts; one to be handled by an LLM and one to be handled by formal methods-based program synthesis.
arXiv Detail & Related papers (2024-09-18T15:59:06Z) - Reasoning on Efficient Knowledge Paths:Knowledge Graph Guides Large Language Model for Domain Question Answering [18.94220625114711]
Large language models (LLMs) perform surprisingly well and outperform human experts on many tasks.
This paper integrates and optimized a pipeline for selecting reasoning paths from KG based on LLM.
We also propose a simple and effective subgraph retrieval method based on chain of thought (CoT) and page rank.
arXiv Detail & Related papers (2024-04-16T08:28:16Z) - Turbulence: Systematically and Automatically Testing Instruction-Tuned
Large Language Models for Code [12.58098809948832]
We present a method for evaluating the correctness and robustness of instruction-tuned large language models (LLMs) for code generation via a new benchmark, Turbulence.
Turbulence consists of a large set of natural language $textitquestion templates$, each of which is a programming problem, parameterised so that it can be asked in many different forms.
From a single question template, it is possible to ask an LLM a $textitneighbourhood$ of very similar programming questions, and assess the correctness of the result returned for each question.
arXiv Detail & Related papers (2023-12-22T17:29:08Z) - LLatrieval: LLM-Verified Retrieval for Verifiable Generation [67.93134176912477]
Verifiable generation aims to let the large language model (LLM) generate text with supporting documents.
We propose LLatrieval (Large Language Model Verified Retrieval), where the LLM updates the retrieval result until it verifies that the retrieved documents can sufficiently support answering the question.
Experiments show that LLatrieval significantly outperforms extensive baselines and achieves state-of-the-art results.
arXiv Detail & Related papers (2023-11-14T01:38:02Z) - Large Language Model (LLM) as a System of Multiple Expert Agents: An
Approach to solve the Abstraction and Reasoning Corpus (ARC) Challenge [20.802440121949072]
We attempt to solve the Abstraction and Reasoning Corpus (ARC) Challenge using Large Language Models (LLMs)
We convert the input image into multiple suitable text-based abstraction spaces.
We then utilise the associative power of LLMs to derive the input-output relationship.
arXiv Detail & Related papers (2023-10-08T12:37:28Z) - Investigating Answerability of LLMs for Long-Form Question Answering [35.41413072729483]
We focus on long-form question answering (LFQA) because it has several practical and impactful applications.
We propose a question-generation method from abstractive summaries and show that generating follow-up questions from summaries of long documents can create a challenging setting.
arXiv Detail & Related papers (2023-09-15T07:22:56Z) - LaGR-SEQ: Language-Guided Reinforcement Learning with Sample-Efficient
Querying [71.86163159193327]
Large language models (LLMs) have recently demonstrated their impressive ability to provide context-aware responses via text.
This ability could potentially be used to predict plausible solutions in sequential decision making tasks pertaining to pattern completion.
We introduce LaGR, which uses this predictive ability of LLMs to propose solutions to tasks that have been partially completed by a primary reinforcement learning (RL) agent.
arXiv Detail & Related papers (2023-08-21T02:07:35Z) - Allies: Prompting Large Language Model with Beam Search [107.38790111856761]
In this work, we propose a novel method called ALLIES.
Given an input query, ALLIES leverages LLMs to iteratively generate new queries related to the original query.
By iteratively refining and expanding the scope of the original query, ALLIES captures and utilizes hidden knowledge that may not be directly through retrieval.
arXiv Detail & Related papers (2023-05-24T06:16:44Z) - LLM-Pruner: On the Structural Pruning of Large Language Models [65.02607075556742]
Large language models (LLMs) have shown remarkable capabilities in language understanding and generation.
We tackle the compression of LLMs within the bound of two constraints: being task-agnostic and minimizing the reliance on the original training dataset.
Our method, named LLM-Pruner, adopts structural pruning that selectively removes non-critical coupled structures.
arXiv Detail & Related papers (2023-05-19T12:10:53Z) - Search-in-the-Chain: Interactively Enhancing Large Language Models with
Search for Knowledge-intensive Tasks [121.74957524305283]
This paper proposes a novel framework named textbfSearch-in-the-Chain (SearChain) for the interaction between Information Retrieval (IR) and Large Language Model (LLM)
Experiments show that SearChain outperforms state-of-the-art baselines on complex knowledge-intensive tasks.
arXiv Detail & Related papers (2023-04-28T10:15:25Z) - Check Your Facts and Try Again: Improving Large Language Models with
External Knowledge and Automated Feedback [127.75419038610455]
Large language models (LLMs) are able to generate human-like, fluent responses for many downstream tasks.
This paper proposes a LLM-Augmenter system, which augments a black-box LLM with a set of plug-and-play modules.
arXiv Detail & Related papers (2023-02-24T18:48:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.