Reliable Learning of Halfspaces under Gaussian Marginals
- URL: http://arxiv.org/abs/2411.11238v1
- Date: Mon, 18 Nov 2024 02:13:11 GMT
- Title: Reliable Learning of Halfspaces under Gaussian Marginals
- Authors: Ilias Diakonikolas, Lisheng Ren, Nikos Zarifis,
- Abstract summary: We study the problem of PAC learning halfspaces in the reliable agnostic model of Kalai et al.
Our main positive result is a new algorithm for reliable learning of Gaussian halfspaces on $mathbbRd$ with sample and computational complexity.
- Score: 34.64644162448095
- License:
- Abstract: We study the problem of PAC learning halfspaces in the reliable agnostic model of Kalai et al. (2012). The reliable PAC model captures learning scenarios where one type of error is costlier than the others. Our main positive result is a new algorithm for reliable learning of Gaussian halfspaces on $\mathbb{R}^d$ with sample and computational complexity $$d^{O(\log (\min\{1/\alpha, 1/\epsilon\}))}\min (2^{\log(1/\epsilon)^{O(\log (1/\alpha))}},2^{\mathrm{poly}(1/\epsilon)})\;,$$ where $\epsilon$ is the excess error and $\alpha$ is the bias of the optimal halfspace. We complement our upper bound with a Statistical Query lower bound suggesting that the $d^{\Omega(\log (1/\alpha))}$ dependence is best possible. Conceptually, our results imply a strong computational separation between reliable agnostic learning and standard agnostic learning of halfspaces in the Gaussian setting.
Related papers
- Agnostically Learning Multi-index Models with Queries [54.290489524576756]
We study the power of query access for the task of agnostic learning under the Gaussian distribution.
We show that query access gives significant runtime improvements over random examples for agnostically learning MIMs.
arXiv Detail & Related papers (2023-12-27T15:50:47Z) - Near-Optimal Bounds for Learning Gaussian Halfspaces with Random
Classification Noise [50.64137465792738]
We show that any efficient SQ algorithm for the problem requires sample complexity at least $Omega(d1/2/(maxp, epsilon)2)$.
Our lower bound suggests that this quadratic dependence on $1/epsilon$ is inherent for efficient algorithms.
arXiv Detail & Related papers (2023-07-13T18:59:28Z) - Near-Optimal Cryptographic Hardness of Agnostically Learning Halfspaces
and ReLU Regression under Gaussian Marginals [43.0867217287089]
We study the task of agnostically learning halfspaces under the Gaussian distribution.
We prove a near-optimal computational hardness result for this task.
arXiv Detail & Related papers (2023-02-13T16:46:23Z) - Cryptographic Hardness of Learning Halfspaces with Massart Noise [59.8587499110224]
We study the complexity of PAC learning halfspaces in the presence of Massart noise.
We show that no-time Massart halfspace learners can achieve error better than $Omega(eta)$, even if the optimal 0-1 error is small.
arXiv Detail & Related papers (2022-07-28T17:50:53Z) - Threshold Phenomena in Learning Halfspaces with Massart Noise [56.01192577666607]
We study the problem of PAC learning halfspaces on $mathbbRd$ with Massart noise under Gaussian marginals.
Our results qualitatively characterize the complexity of learning halfspaces in the Massart model.
arXiv Detail & Related papers (2021-08-19T16:16:48Z) - Hardness of Learning Halfspaces with Massart Noise [56.98280399449707]
We study the complexity of PAC learning halfspaces in the presence of Massart (bounded) noise.
We show that there an exponential gap between the information-theoretically optimal error and the best error that can be achieved by a SQ algorithm.
arXiv Detail & Related papers (2020-12-17T16:43:11Z) - Learning Halfspaces with Tsybakov Noise [50.659479930171585]
We study the learnability of halfspaces in the presence of Tsybakov noise.
We give an algorithm that achieves misclassification error $epsilon$ with respect to the true halfspace.
arXiv Detail & Related papers (2020-06-11T14:25:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.