Text-guided Zero-Shot Object Localization
- URL: http://arxiv.org/abs/2411.11357v1
- Date: Mon, 18 Nov 2024 08:03:11 GMT
- Title: Text-guided Zero-Shot Object Localization
- Authors: Jingjing Wang, Xinglin Piao, Zongzhi Gao, Bo Li, Yong Zhang, Baocai Yin,
- Abstract summary: The proposed framework can be guided by prompt words to identify and locate specific objects in an image in the absence of labeled samples.
The results of extensive experiments demonstrate that the proposed method could improve the localization performance significantly.
- Score: 37.90350919486988
- License:
- Abstract: Object localization is a hot issue in computer vision area, which aims to identify and determine the precise location of specific objects from image or video. Most existing object localization methods heavily rely on extensive labeled data, which are costly to annotate and constrain their applicability. Therefore, we propose a new Zero-Shot Object Localization (ZSOL) framework for addressing the aforementioned challenges. In the proposed framework, we introduce the Contrastive Language Image Pre-training (CLIP) module which could integrate visual and linguistic information effectively. Furthermore, we design a Text Self-Similarity Matching (TSSM) module, which could improve the localization accuracy by enhancing the representation of text features extracted by CLIP module. Hence, the proposed framework can be guided by prompt words to identify and locate specific objects in an image in the absence of labeled samples. The results of extensive experiments demonstrate that the proposed method could improve the localization performance significantly and establishes an effective benchmark for further research.
Related papers
- Teaching VLMs to Localize Specific Objects from In-context Examples [56.797110842152]
Vision-Language Models (VLMs) have shown remarkable capabilities across diverse visual tasks.
Current VLMs lack a fundamental cognitive ability: learning to localize objects in a scene by taking into account the context.
This work is the first to explore and benchmark personalized few-shot localization for VLMs.
arXiv Detail & Related papers (2024-11-20T13:34:22Z) - Contrastive Localized Language-Image Pre-Training [60.4967533101887]
Contrastive Language-Image Pre-training (CLIP) has been a celebrated method for training vision encoders to generate image/text representations.
We propose Contrastive Localized Language-Image Pre-training (CLOC) by complementing CLIP with region-text contrastive loss and modules.
CLOC enables high-quality regional embeddings for image region recognition and retrieval tasks.
arXiv Detail & Related papers (2024-10-03T17:56:09Z) - LOGO: Video Text Spotting with Language Collaboration and Glyph Perception Model [20.007650672107566]
Video text spotting (VTS) aims to simultaneously localize, recognize and track text instances in videos.
Recent methods track the zero-shot results of state-of-the-art image text spotters directly.
Fine-tuning transformer-based text spotters on specific datasets could yield performance enhancements.
arXiv Detail & Related papers (2024-05-29T15:35:09Z) - CLIM: Contrastive Language-Image Mosaic for Region Representation [58.05870131126816]
Contrastive Language-Image Mosaic (CLIM) is a novel approach for aligning region and text representations.
CLIM consistently improves different open-vocabulary object detection methods.
It can effectively enhance the region representation of vision-language models.
arXiv Detail & Related papers (2023-12-18T17:39:47Z) - Bootstrap Fine-Grained Vision-Language Alignment for Unified Zero-Shot
Anomaly Localization [63.61093388441298]
Contrastive Language-Image Pre-training models have shown promising performance on zero-shot visual recognition tasks.
In this work, we propose AnoCLIP for zero-shot anomaly localization.
arXiv Detail & Related papers (2023-08-30T10:35:36Z) - RRSIS: Referring Remote Sensing Image Segmentation [25.538406069768662]
Localizing desired objects from remote sensing images is of great use in practical applications.
Referring image segmentation, which aims at segmenting out the objects to which a given expression refers, has been extensively studied in natural images.
We introduce referring remote sensing image segmentation (RRSIS) to fill in this gap and make some insightful explorations.
arXiv Detail & Related papers (2023-06-14T16:40:19Z) - Language Guided Local Infiltration for Interactive Image Retrieval [12.324893780690918]
Interactive Image Retrieval (IIR) aims to retrieve images that are generally similar to the reference image but under requested text modification.
We propose a Language Guided Local Infiltration (LGLI) system, which fully utilizes the text information and penetrates text features into image features.
Our method outperforms most state-of-the-art IIR approaches.
arXiv Detail & Related papers (2023-04-16T10:33:08Z) - Semi-Supervised Cross-Modal Salient Object Detection with U-Structure
Networks [18.12933868289846]
We integrate the linguistic information into the vision-based U-Structure networks designed for salient object detection tasks.
We propose a new module called efficient Cross-Modal Self-Attention (eCMSA) to combine visual and linguistic features.
To reduce the heavy burden of labeling, we employ a semi-supervised learning method by training an image caption model.
arXiv Detail & Related papers (2022-08-08T18:39:37Z) - Improving Visual Grounding with Visual-Linguistic Verification and
Iterative Reasoning [42.29650807349636]
We propose a transformer-based framework for accurate visual grounding.
We develop a visual-linguistic verification module to focus the visual features on regions relevant to the textual descriptions.
A language-guided feature encoder is also devised to aggregate the visual contexts of the target object to improve the object's distinctiveness.
arXiv Detail & Related papers (2022-04-30T13:48:15Z) - Spatial Likelihood Voting with Self-Knowledge Distillation for Weakly
Supervised Object Detection [54.24966006457756]
We propose a WSOD framework called the Spatial Likelihood Voting with Self-knowledge Distillation Network (SLV-SD Net)
SLV-SD Net converges region proposal localization without bounding box annotations.
Experiments on the PASCAL VOC 2007/2012 and MS-COCO datasets demonstrate the excellent performance of SLV-SD Net.
arXiv Detail & Related papers (2022-04-14T11:56:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.