Causal Effect of Group Diversity on Redundancy and Coverage in Peer-Reviewing
- URL: http://arxiv.org/abs/2411.11437v1
- Date: Mon, 18 Nov 2024 10:08:10 GMT
- Title: Causal Effect of Group Diversity on Redundancy and Coverage in Peer-Reviewing
- Authors: Navita Goyal, Ivan Stelmakh, Nihar Shah, Hal Daumé III,
- Abstract summary: We conduct a study of different measures of reviewer diversity on review coverage and redundancy.
We find no evidence of an increase in coverage for reviewer slates with reviewers from diverse organizations or geographical locations.
Our study adopts a group decision-making perspective for reviewer assignments in peer review and suggests dimensions of diversity that can help guide the reviewer assignment process.
- Score: 28.370725937271448
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A large host of scientific journals and conferences solicit peer reviews from multiple reviewers for the same submission, aiming to gather a broader range of perspectives and mitigate individual biases. In this work, we reflect on the role of diversity in the slate of reviewers assigned to evaluate a submitted paper as a factor in diversifying perspectives and improving the utility of the peer-review process. We propose two measures for assessing review utility: review coverage -- reviews should cover most contents of the paper -- and review redundancy -- reviews should add information not already present in other reviews. We hypothesize that reviews from diverse reviewers will exhibit high coverage and low redundancy. We conduct a causal study of different measures of reviewer diversity on review coverage and redundancy using observational data from a peer-reviewed conference with approximately 5,000 submitted papers. Our study reveals disparate effects of different diversity measures on review coverage and redundancy. Our study finds that assigning a group of reviewers that are topically diverse, have different seniority levels, or have distinct publication networks leads to broader coverage of the paper or review criteria, but we find no evidence of an increase in coverage for reviewer slates with reviewers from diverse organizations or geographical locations. Reviewers from different organizations, seniority levels, topics, or publications networks (all except geographical diversity) lead to a decrease in redundancy in reviews. Furthermore, publication network-based diversity alone also helps bring in varying perspectives (that is, low redundancy), even within specific review criteria. Our study adopts a group decision-making perspective for reviewer assignments in peer review and suggests dimensions of diversity that can help guide the reviewer assignment process.
Related papers
- Disparities in Peer Review Tone and the Role of Reviewer Anonymity [0.0]
This study examines more than 80,000 reviews in two major journals.<n>It uncovers how review tone, sentiment, and supportive language vary across author demographics.
arXiv Detail & Related papers (2025-07-19T20:19:21Z) - Identifying Aspects in Peer Reviews [61.374437855024844]
We develop a data-driven schema for deriving fine-grained aspects from a corpus of peer reviews.
We introduce a dataset of peer reviews augmented with aspects and show how it can be used for community-level review analysis.
arXiv Detail & Related papers (2025-04-09T14:14:42Z) - AgentReview: Exploring Peer Review Dynamics with LLM Agents [13.826819101545926]
We introduce AgentReview, the first large language model (LLM) based peer review simulation framework.
Our study reveals significant insights, including a notable 37.1% variation in paper decisions due to reviewers' biases.
arXiv Detail & Related papers (2024-06-18T15:22:12Z) - A Literature Review of Literature Reviews in Pattern Analysis and Machine Intelligence [58.6354685593418]
This paper proposes several article-level, field-normalized, and large language model-empowered bibliometric indicators to evaluate reviews.
The newly emerging AI-generated literature reviews are also appraised.
This work offers insights into the current challenges of literature reviews and envisions future directions for their development.
arXiv Detail & Related papers (2024-02-20T11:28:50Z) - Examining Bias in Opinion Summarisation Through the Perspective of
Opinion Diversity [7.16988671744865]
We study bias in opinion summarisation from the perspective of opinion diversity.
We examine opinion similarity, a measure of how closely related two opinions are in terms of their stance on a given topic.
arXiv Detail & Related papers (2023-06-07T13:31:02Z) - Scientific Opinion Summarization: Paper Meta-review Generation Dataset, Methods, and Evaluation [55.00687185394986]
We propose the task of scientific opinion summarization, where research paper reviews are synthesized into meta-reviews.
We introduce the ORSUM dataset covering 15,062 paper meta-reviews and 57,536 paper reviews from 47 conferences.
Our experiments show that (1) human-written summaries do not always satisfy all necessary criteria such as depth of discussion, and identifying consensus and controversy for the specific domain, and (2) the combination of task decomposition and iterative self-refinement shows strong potential for enhancing the opinions.
arXiv Detail & Related papers (2023-05-24T02:33:35Z) - Submission-Aware Reviewer Profiling for Reviewer Recommender System [26.382772998002523]
We propose an approach that learns from each abstract published by a potential reviewer the topics studied and the explicit context in which the reviewer studied the topics.
Our experiments show a significant, consistent improvement in precision when compared with the existing methods.
The new approach has been deployed successfully at top-tier conferences in the last two years.
arXiv Detail & Related papers (2022-11-08T12:18:02Z) - Investigating Fairness Disparities in Peer Review: A Language Model
Enhanced Approach [77.61131357420201]
We conduct a thorough and rigorous study on fairness disparities in peer review with the help of large language models (LMs)
We collect, assemble, and maintain a comprehensive relational database for the International Conference on Learning Representations (ICLR) conference from 2017 to date.
We postulate and study fairness disparities on multiple protective attributes of interest, including author gender, geography, author, and institutional prestige.
arXiv Detail & Related papers (2022-11-07T16:19:42Z) - Measuring "Why" in Recommender Systems: a Comprehensive Survey on the
Evaluation of Explainable Recommendation [87.82664566721917]
This survey is based on more than 100 papers from top-tier conferences like IJCAI, AAAI, TheWebConf, Recsys, UMAP, and IUI.
arXiv Detail & Related papers (2022-02-14T02:58:55Z) - Learning Opinion Summarizers by Selecting Informative Reviews [81.47506952645564]
We collect a large dataset of summaries paired with user reviews for over 31,000 products, enabling supervised training.
The content of many reviews is not reflected in the human-written summaries, and, thus, the summarizer trained on random review subsets hallucinates.
We formulate the task as jointly learning to select informative subsets of reviews and summarizing the opinions expressed in these subsets.
arXiv Detail & Related papers (2021-09-09T15:01:43Z) - Ranking Scientific Papers Using Preference Learning [48.78161994501516]
We cast it as a paper ranking problem based on peer review texts and reviewer scores.
We introduce a novel, multi-faceted generic evaluation framework for making final decisions based on peer reviews.
arXiv Detail & Related papers (2021-09-02T19:41:47Z) - Aspect-based Sentiment Analysis of Scientific Reviews [12.472629584751509]
We show that the distribution of aspect-based sentiments obtained from a review is significantly different for accepted and rejected papers.
As a second objective, we quantify the extent of disagreement among the reviewers refereeing a paper.
We also investigate the extent of disagreement between the reviewers and the chair and find that the inter-reviewer disagreement may have a link to the disagreement with the chair.
arXiv Detail & Related papers (2020-06-05T07:06:01Z) - How Useful are Reviews for Recommendation? A Critical Review and
Potential Improvements [8.471274313213092]
We investigate a growing body of work that seeks to improve recommender systems through the use of review text.
Our initial findings reveal several discrepancies in reported results, partly due to copying results across papers despite changes in experimental settings or data pre-processing.
Further investigation calls for discussion on a much larger problem about the "importance" of user reviews for recommendation.
arXiv Detail & Related papers (2020-05-25T16:30:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.