MGNiceNet: Unified Monocular Geometric Scene Understanding
- URL: http://arxiv.org/abs/2411.11466v1
- Date: Mon, 18 Nov 2024 11:01:25 GMT
- Title: MGNiceNet: Unified Monocular Geometric Scene Understanding
- Authors: Markus Schön, Michael Buchholz, Klaus Dietmayer,
- Abstract summary: Monocular geometric scene understanding combines panoptic segmentation and self-supervised depth estimation.
We introduce MGNiceNet, a unified approach that uses a linked kernel formulation for panoptic segmentation and self-supervised depth estimation.
Our model shows state-of-the-art results compared to other real-time methods and closes the gap to computationally more demanding methods.
- Score: 14.246482460672267
- License:
- Abstract: Monocular geometric scene understanding combines panoptic segmentation and self-supervised depth estimation, focusing on real-time application in autonomous vehicles. We introduce MGNiceNet, a unified approach that uses a linked kernel formulation for panoptic segmentation and self-supervised depth estimation. MGNiceNet is based on the state-of-the-art real-time panoptic segmentation method RT-K-Net and extends the architecture to cover both panoptic segmentation and self-supervised monocular depth estimation. To this end, we introduce a tightly coupled self-supervised depth estimation predictor that explicitly uses information from the panoptic path for depth prediction. Furthermore, we introduce a panoptic-guided motion masking method to improve depth estimation without relying on video panoptic segmentation annotations. We evaluate our method on two popular autonomous driving datasets, Cityscapes and KITTI. Our model shows state-of-the-art results compared to other real-time methods and closes the gap to computationally more demanding methods. Source code and trained models are available at https://github.com/markusschoen/MGNiceNet.
Related papers
- ScaleDepth: Decomposing Metric Depth Estimation into Scale Prediction and Relative Depth Estimation [62.600382533322325]
We propose a novel monocular depth estimation method called ScaleDepth.
Our method decomposes metric depth into scene scale and relative depth, and predicts them through a semantic-aware scale prediction module.
Our method achieves metric depth estimation for both indoor and outdoor scenes in a unified framework.
arXiv Detail & Related papers (2024-07-11T05:11:56Z) - Self-Supervised Learning based Depth Estimation from Monocular Images [0.0]
The goal of Monocular Depth Estimation is to predict the depth map, given a 2D monocular RGB image as input.
We plan to do intrinsic camera parameters during training and apply weather augmentations to further generalize our model.
arXiv Detail & Related papers (2023-04-14T07:14:08Z) - SC-DepthV3: Robust Self-supervised Monocular Depth Estimation for
Dynamic Scenes [58.89295356901823]
Self-supervised monocular depth estimation has shown impressive results in static scenes.
It relies on the multi-view consistency assumption for training networks, however, that is violated in dynamic object regions.
We introduce an external pretrained monocular depth estimation model for generating single-image depth prior.
Our model can predict sharp and accurate depth maps, even when training from monocular videos of highly-dynamic scenes.
arXiv Detail & Related papers (2022-11-07T16:17:47Z) - MGNet: Monocular Geometric Scene Understanding for Autonomous Driving [10.438741209852209]
MGNet is a multi-task framework for monocular geometric scene understanding.
We define monocular geometric scene understanding as the combination of two known tasks: Panoptic segmentation and self-supervised monocular depth estimation.
Our model is designed with focus on low latency to provide fast inference in real-time on a single consumer-grade GPU.
arXiv Detail & Related papers (2022-06-27T11:27:55Z) - SurroundDepth: Entangling Surrounding Views for Self-Supervised
Multi-Camera Depth Estimation [101.55622133406446]
We propose a SurroundDepth method to incorporate the information from multiple surrounding views to predict depth maps across cameras.
Specifically, we employ a joint network to process all the surrounding views and propose a cross-view transformer to effectively fuse the information from multiple views.
In experiments, our method achieves the state-of-the-art performance on the challenging multi-camera depth estimation datasets.
arXiv Detail & Related papers (2022-04-07T17:58:47Z) - TANDEM: Tracking and Dense Mapping in Real-time using Deep Multi-view
Stereo [55.30992853477754]
We present TANDEM, a real-time monocular tracking and dense framework.
For pose estimation, TANDEM performs photometric bundle adjustment based on a sliding window of alignments.
TANDEM shows state-of-the-art real-time 3D reconstruction performance.
arXiv Detail & Related papers (2021-11-14T19:01:02Z) - Self-Supervised Monocular Depth Estimation with Internal Feature Fusion [12.874712571149725]
Self-supervised learning for depth estimation uses geometry in image sequences for supervision.
We propose a novel depth estimation networkDIFFNet, which can make use of semantic information in down and upsampling procedures.
arXiv Detail & Related papers (2021-10-18T17:31:11Z) - Learning Monocular Depth in Dynamic Scenes via Instance-Aware Projection
Consistency [114.02182755620784]
We present an end-to-end joint training framework that explicitly models 6-DoF motion of multiple dynamic objects, ego-motion and depth in a monocular camera setup without supervision.
Our framework is shown to outperform the state-of-the-art depth and motion estimation methods.
arXiv Detail & Related papers (2021-02-04T14:26:42Z) - Self-Supervised Joint Learning Framework of Depth Estimation via
Implicit Cues [24.743099160992937]
We propose a novel self-supervised joint learning framework for depth estimation.
The proposed framework outperforms the state-of-the-art(SOTA) on KITTI and Make3D datasets.
arXiv Detail & Related papers (2020-06-17T13:56:59Z) - Don't Forget The Past: Recurrent Depth Estimation from Monocular Video [92.84498980104424]
We put three different types of depth estimation into a common framework.
Our method produces a time series of depth maps.
It can be applied to monocular videos only or be combined with different types of sparse depth patterns.
arXiv Detail & Related papers (2020-01-08T16:50:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.