Exploring Emerging Trends and Research Opportunities in Visual Place Recognition
- URL: http://arxiv.org/abs/2411.11481v1
- Date: Mon, 18 Nov 2024 11:36:17 GMT
- Title: Exploring Emerging Trends and Research Opportunities in Visual Place Recognition
- Authors: Antonios Gasteratos, Konstantinos A. Tsintotas, Tobias Fischer, Yiannis Aloimonos, Michael Milford,
- Abstract summary: Visual-based recognition is a long-standing challenge in computer vision and robotics communities.
Visual place recognition is vital for most localization implementations.
Researchers have recently turned their attention to vision-language models.
- Score: 28.76562316749074
- License:
- Abstract: Visual-based recognition, e.g., image classification, object detection, etc., is a long-standing challenge in computer vision and robotics communities. Concerning the roboticists, since the knowledge of the environment is a prerequisite for complex navigation tasks, visual place recognition is vital for most localization implementations or re-localization and loop closure detection pipelines within simultaneous localization and mapping (SLAM). More specifically, it corresponds to the system's ability to identify and match a previously visited location using computer vision tools. Towards developing novel techniques with enhanced accuracy and robustness, while motivated by the success presented in natural language processing methods, researchers have recently turned their attention to vision-language models, which integrate visual and textual data.
Related papers
- Learning Where to Look: Self-supervised Viewpoint Selection for Active Localization using Geometrical Information [68.10033984296247]
This paper explores the domain of active localization, emphasizing the importance of viewpoint selection to enhance localization accuracy.
Our contributions involve using a data-driven approach with a simple architecture designed for real-time operation, a self-supervised data training method, and the capability to consistently integrate our map into a planning framework tailored for real-world robotics applications.
arXiv Detail & Related papers (2024-07-22T12:32:09Z) - GeoVLN: Learning Geometry-Enhanced Visual Representation with Slot
Attention for Vision-and-Language Navigation [52.65506307440127]
We propose GeoVLN, which learns Geometry-enhanced visual representation based on slot attention for robust Visual-and-Language Navigation.
We employ V&L BERT to learn a cross-modal representation that incorporate both language and vision informations.
arXiv Detail & Related papers (2023-05-26T17:15:22Z) - Self-Supervised Feature Learning for Long-Term Metric Visual
Localization [16.987148593917905]
We present a novel self-supervised feature learning framework for metric visual localization.
We use a sequence-based image matching algorithm to generate image correspondences without ground-truth labels.
We can then sample image pairs to train a deep neural network that learns sparse features with associated descriptors and scores without ground-truth pose supervision.
arXiv Detail & Related papers (2022-11-30T21:15:05Z) - From Two to One: A New Scene Text Recognizer with Visual Language
Modeling Network [70.47504933083218]
We propose a Visual Language Modeling Network (VisionLAN), which views the visual and linguistic information as a union.
VisionLAN significantly improves the speed by 39% and adaptively considers the linguistic information to enhance the visual features for accurate recognition.
arXiv Detail & Related papers (2021-08-22T07:56:24Z) - Deep Learning for Embodied Vision Navigation: A Survey [108.13766213265069]
"Embodied visual navigation" problem requires an agent to navigate in a 3D environment mainly rely on its first-person observation.
This paper attempts to establish an outline of the current works in the field of embodied visual navigation by providing a comprehensive literature survey.
arXiv Detail & Related papers (2021-07-07T12:09:04Z) - ViNG: Learning Open-World Navigation with Visual Goals [82.84193221280216]
We propose a learning-based navigation system for reaching visually indicated goals.
We show that our system, which we call ViNG, outperforms previously-proposed methods for goal-conditioned reinforcement learning.
We demonstrate ViNG on a number of real-world applications, such as last-mile delivery and warehouse inspection.
arXiv Detail & Related papers (2020-12-17T18:22:32Z) - Embodied Visual Active Learning for Semantic Segmentation [33.02424587900808]
We study the task of embodied visual active learning, where an agent is set to explore a 3d environment with the goal to acquire visual scene understanding.
We develop a battery of agents - both learnt and pre-specified - and with different levels of knowledge of the environment.
We extensively evaluate the proposed models using the Matterport3D simulator and show that a fully learnt method outperforms comparable pre-specified counterparts.
arXiv Detail & Related papers (2020-12-17T11:02:34Z) - City-Scale Visual Place Recognition with Deep Local Features Based on
Multi-Scale Ordered VLAD Pooling [5.274399407597545]
We present a fully-automated system for place recognition at a city-scale based on content-based image retrieval.
Firstly, we take a comprehensive analysis of visual place recognition and sketch out the unique challenges of the task.
Next, we propose yet a simple pooling approach on top of convolutional neural network activations to embed the spatial information into the image representation vector.
arXiv Detail & Related papers (2020-09-19T15:21:59Z) - Online Visual Place Recognition via Saliency Re-identification [26.209412893744094]
Existing methods often formulate visual place recognition as feature matching.
Inspired by the fact that human beings always recognize a place by remembering salient regions or landmarks, we formulate visual place recognition as saliency re-identification.
In the meanwhile, we propose to perform both saliency detection and re-identification in frequency domain, in which all operations become element-wise.
arXiv Detail & Related papers (2020-07-29T01:53:45Z) - Continuous Emotion Recognition via Deep Convolutional Autoencoder and
Support Vector Regressor [70.2226417364135]
It is crucial that the machine should be able to recognize the emotional state of the user with high accuracy.
Deep neural networks have been used with great success in recognizing emotions.
We present a new model for continuous emotion recognition based on facial expression recognition.
arXiv Detail & Related papers (2020-01-31T17:47:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.