Alien Recombination: Exploring Concept Blends Beyond Human Cognitive Availability in Visual Art
- URL: http://arxiv.org/abs/2411.11494v1
- Date: Mon, 18 Nov 2024 11:55:38 GMT
- Title: Alien Recombination: Exploring Concept Blends Beyond Human Cognitive Availability in Visual Art
- Authors: Alejandro Hernandez, Levin Brinkmann, Ignacio Serna, Nasim Rahaman, Hassan Abu Alhaija, Hiromu Yakura, Mar Canet Sola, Bernhard Schölkopf, Iyad Rahwan,
- Abstract summary: We show how AI can transcend human cognitive limitations in visual art creation.
Our research hypothesizes that visual art contains a vast unexplored space of conceptual combinations.
We present the Alien Recombination method to identify and generate concept combinations that lie beyond human cognitive availability.
- Score: 90.8684263806649
- License:
- Abstract: While AI models have demonstrated remarkable capabilities in constrained domains like game strategy, their potential for genuine creativity in open-ended domains like art remains debated. We explore this question by examining how AI can transcend human cognitive limitations in visual art creation. Our research hypothesizes that visual art contains a vast unexplored space of conceptual combinations, constrained not by inherent incompatibility, but by cognitive limitations imposed by artists' cultural, temporal, geographical and social contexts. To test this hypothesis, we present the Alien Recombination method, a novel approach utilizing fine-tuned large language models to identify and generate concept combinations that lie beyond human cognitive availability. The system models and deliberately counteracts human availability bias, the tendency to rely on immediately accessible examples, to discover novel artistic combinations. This system not only produces combinations that have never been attempted before within our dataset but also identifies and generates combinations that are cognitively unavailable to all artists in the domain. Furthermore, we translate these combinations into visual representations, enabling the exploration of subjective perceptions of novelty. Our findings suggest that cognitive unavailability is a promising metric for optimizing artistic novelty, outperforming merely temperature scaling without additional evaluation criteria. This approach uses generative models to connect previously unconnected ideas, providing new insight into the potential of framing AI-driven creativity as a combinatorial problem.
Related papers
- Diffusion-Based Visual Art Creation: A Survey and New Perspectives [51.522935314070416]
This survey explores the emerging realm of diffusion-based visual art creation, examining its development from both artistic and technical perspectives.
Our findings reveal how artistic requirements are transformed into technical challenges and highlight the design and application of diffusion-based methods within visual art creation.
We aim to shed light on the mechanisms through which AI systems emulate and possibly, enhance human capacities in artistic perception and creativity.
arXiv Detail & Related papers (2024-08-22T04:49:50Z) - A Neuro-mimetic Realization of the Common Model of Cognition via Hebbian
Learning and Free Energy Minimization [55.11642177631929]
Large neural generative models are capable of synthesizing semantically rich passages of text or producing complex images.
We discuss the COGnitive Neural GENerative system, such an architecture that casts the Common Model of Cognition.
arXiv Detail & Related papers (2023-10-14T23:28:48Z) - The Relational Bottleneck as an Inductive Bias for Efficient Abstraction [3.19883356005403]
We show that neural networks are constrained via their architecture to focus on relations between perceptual inputs, rather than the attributes of individual inputs.
We review a family of models that employ this approach to induce abstractions in a data-efficient manner.
arXiv Detail & Related papers (2023-09-12T22:44:14Z) - ConceptLab: Creative Concept Generation using VLM-Guided Diffusion Prior
Constraints [56.824187892204314]
We present the task of creative text-to-image generation, where we seek to generate new members of a broad category.
We show that the creative generation problem can be formulated as an optimization process over the output space of the diffusion prior.
We incorporate a question-answering Vision-Language Model (VLM) that adaptively adds new constraints to the optimization problem, encouraging the model to discover increasingly more unique creations.
arXiv Detail & Related papers (2023-08-03T17:04:41Z) - Sample-Efficient Learning of Novel Visual Concepts [7.398195748292981]
State-of-the-art deep learning models struggle to recognize novel objects in a few-shot setting.
We show that incorporating a symbolic knowledge graph into a state-of-the-art recognition model enables a new approach for effective few-shot classification.
arXiv Detail & Related papers (2023-06-15T20:24:30Z) - The Creative Frontier of Generative AI: Managing the Novelty-Usefulness
Tradeoff [0.4873362301533825]
We explore the optimal balance between novelty and usefulness in generative Artificial Intelligence (AI) systems.
Overemphasizing either aspect can lead to limitations such as hallucinations and memorization.
arXiv Detail & Related papers (2023-06-06T11:44:57Z) - Art Creation with Multi-Conditional StyleGANs [81.72047414190482]
A human artist needs a combination of unique skills, understanding, and genuine intention to create artworks that evoke deep feelings and emotions.
We introduce a multi-conditional Generative Adversarial Network (GAN) approach trained on large amounts of human paintings to synthesize realistic-looking paintings that emulate human art.
arXiv Detail & Related papers (2022-02-23T20:45:41Z) - WenLan 2.0: Make AI Imagine via a Multimodal Foundation Model [74.4875156387271]
We develop a novel foundation model pre-trained with huge multimodal (visual and textual) data.
We show that state-of-the-art results can be obtained on a wide range of downstream tasks.
arXiv Detail & Related papers (2021-10-27T12:25:21Z) - The Work of Art in an Age of Mechanical Generation [0.0]
Can we define what it means to be "creative," and if so, can our definition drive artificial intelligence systems to feats of creativity indistinguishable from human efforts?
This article considers the ability of AI to detect forgeries of renowned paintings and, in so doing, somehow reveal the quiddity of a work of art.
arXiv Detail & Related papers (2021-01-27T18:32:58Z) - Deep Learning of Individual Aesthetics [5.837881923712394]
We investigate the relationship between image measures, such as complexity, and human aesthetic evaluation.
We use dimension reduction methods to visualise both genotype and phenotype space in order to support the exploration of new territory in a generative system.
We integrate this classification and discovery system into a software tool for evolving complex generative art and design.
arXiv Detail & Related papers (2020-09-24T03:04:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.